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Organometallic allylation for the formation of C-C bonds has been a widely
developed area over the past several decades for the formation of homoallylic alcohols and
amines. One such pathway, the eponymous Hosomi-Sakurai reaction involves the Lewis
acid-catalyzed addition of an allylic silane to an acetal, carbonyl, or imine. This work
demonstrates an example of a Hosomi-Sakurai reaction using 1,2-ditosyl diazetidine as a
slow release formaldimine precursor with good yield and high selectivity.

Another less classical field, C-H activation, has also been around for several
decades, but has recently exploded in new innovations. Through C-H activation chemists
are able to bypass the need for functional groups that are substituted out, but instead utilizes
the C-H bond as a synthon for further functionalization. This work will also demonstrate a
modular approach for the synthesis of several ruthenium complexes with the potential to

catalyze C-H activation.
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CHAPTER 1

INTRODUCTION

1.1 Novel formaldimine precursor for use in a Hosomi-Sakurai reaction for the
formation of phenyl-substituted homoallylamines

Allylation and aminomethylation are two very effective methods for C-C bond
construction involving both a nucleophile and an electron deficient carbonyl or imine bond.
Both of these types of reactions have been reviewed extensively with numerous examples
containing good to excellent yields and high stereoselectivity.!”* For most of these reactions
the electron deficient carbonyl or imine needs to be activated by a Lewis acid, or
alternatively the nucleophile can be activated by a Lewis base. These activating species
can also significantly affect factors such as diastereoselectivity and regioselectivity. In
addition to Lewis acid activation, the choice of imine substrate is also an immense factor
governing reactivity and/or selectivity. A highly hindered substrate can strongly affect the
approach of the nucleophile while a less hindered substrate may increase reactivity. As an
extension of this, we report herein a method to utilize 1,2-ditosyl diazetidine, a four
membered heterocycle that our group previously produced,* to generate the electron
deficient formaldimine in situ to be used in an allylation reaction, namely a Hosomi-

Sakurai reaction.>°
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Scheme 1.1  Formation of homoallylic alcohols via organometallic allylation’

Organometallic allylations have had a long tradition in organic chemistry and
typically involve a nucleophile consisting of an allylic olefin (1) attacking an electrophilic
carbonyl (2) or imine substrate. While this topic has been widely studied and reviewed I
will present the notable features related to the nucleophiles and substrates used herein. Very
often these allylic nucleophiles contain an activating species in a terminal position (Sn, Si,
B, etc.). The choice of end-group plays an immense factor in nucleophile activity,
intermediate stability, and enantioselectivity and these attributes have been reviewed
extensively.!? These reactions have been developed over the past century to demonstrate
both effective yields and high enantioselectivity. End-group silanes increase the
effectiveness of nucleophilic addition through the stabilizing B-silicon effect.?
Additionally, stannic species, which have also been utilized very commonly, demonstrate
a stabilization through both steric and electronic effects. The nucleophilic olefin attacks
generating an acyclic synclinal transition state to minimize steric interactions while at the
same time demonstrating a stabilizing interaction between the allylic HOMO and the

aldehydic LUMO.” As a result of the transition state arrangement, the stereochemistry is
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strongly affected. Through the variation of the metal at the end of the allylic species
scientists have demonstrated strongly syn enantioselectivity with Si, Sn, and B species,
while Cr, Zn, and In show strong anti-selectivity. However, activating chiral Lewis acids
and Lewis bases can override these preferences.!®!! Through organometallic allylation

scientists have been able to form an array of homoallylic alcohols and amines.

Scheme 1.2 Organometallic allylation with a closed transition state'

One specific type of organometallic allylation that has been popular over the past
few decades is the Hosomi-Sakurai reaction. Demonstrated initially by Hideki Sakurai® in
1976, this reaction uses an allylic silane (8) to react with a Lewis acid activated carbonyl
(7), imine or acetal in a stepwise fashion. After the initial addition of the allylic nucleophile,
the compound forms a cationic transition state, which is stabilized by a hyperconjugative
beta-silicon effect.® Next the silyl species is cleaved resulting in a homoallylic alcohol (9)
or amine. The reaction pathway is able to proceed through either a closed or open transition
state depending on which activating Lewis acid used. Observed stereoselectivity is
significantly higher for reactions proceeding through the closed transition state due to the

rigid conformation.”"-12
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Scheme 1.3  Hosomi-Sakurai reaction®

Though several examples of Hosomi-Sakurai reactions exist throughout literature,
fewer have utilized a catalytic amount of Lewis acid with imines.>!* Indeed there are
several variations on the Hosomi-Sakurai reaction that involve various silanes, Lewis acids,
and choices of substrate. While most Hosomi-Sakurai reactions involve the use of
aldehydes as the substrate, there are numerous examples where both acetals and imines are
used.®!* These imine substrates react in a similar manner as aldehydes, however nitrogen
can be a limiting factor in some cases as it often interferes with Lewis acid catalyzed
pathways due to its basic nature.!® This obstacle in organometallic allylation, however, has
been overcome and Lewis acid catalyzed Hosomi-Sakurai reactions with imine substrates
remain a very viable route to homoallylamines.

Another reaction pathway very similar to an imine Hosomi-Sakurai reaction is
hydroaminomethylation. Hydroaminomethylation involves the addition of a hydrogen,

amine, and methyl to a substrate species.!®!” There are several pathways for

www.manaraa.com



Scheme 1.4  An example of hydroaminomethylation through a reductive pathway'’

hydroaminomethylation including reductive amination, allylation, and Mannich type
reactions, to name a few.!”!® In effect a Hosomi-Sakurai reaction with an imine substrate
is also an example of hydroaminoalkylation. To this end, the use of formaldimine as the
substrate would invariably result in a hydroaminomethylation since formaldimine’s alkyl
species contains only one carbon. Such a reaction is not without precedent. In the 1940s,
initial work utilizing Fe(CO)s as a catalyst for hydroaminomethylation was carried out."
Since then significantly more work has been accomplished and has been well
reviewed.!?%?! In a recent publication in 2016, Michael Krische published a ruthenium-
catalyzed addition of dienes to formaldimine.?? In this work Krische uses a novel triazine
precursor (15) to generate formaldimine in situ (Scheme 1.5). This precursor, as it turns
out, was very useful for carrying out hydroaminomethylation as it bypassed selectivity

issues due to the high reactivity of formaldimine. Another example of the use of a

formaldimine precursor was carried out in 1986 by Hiroshi Kotake.?
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Scheme 1.5  Use of 1,3,5-tris(aryl)-hexahydro-1,3,5-triazine for regiospecific
hydroaminomethylation®?

Kotake used TsCH2NHTs to generate formaldimine through base cleavage and
demonstrated its utility by aminomethylating several nucleophiles including pyrroldines,
ester-stabilized carbanions, and sulfone carbanions showing moderate to good yields. This
method was again used by Zhou et al. and Sikriwal et al.?* ?* in a [2+2+2] catalytic
formation of hexahydropyrimidines and in a synthesis of three epimers of penmacric acid

respectively (Schemes1.6 and 1.7).

InClI TsN

X H 3 SN —\

©/\ + TsN=< —_— NTs
H DCE, 60°C, 12h

17 18 19

Scheme 1.6 Synthesis of Hexahydropyrimidine?*
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Scheme 1.7  Synthesis of penmacric acid epimer®

Formaldimine, however, does suffer from an inherent propensity for instability and
decreased selectivity due to its unhindered structure and highly electrophilic center. In an
effort to create a source of formaldimine with higher selectivity, our group developed a
method to utilize 1,2-ditosyl diazetidine as a slow release formaldimine precursor with high
selectivity and reactivity. 1,2-ditosyl diazetidine is a four membered heterocyclic ring
containing two nitrogens and two carbons. This variation in chemical bonds (C-N, N-N, C-
C) also presents the possibility of additional reactivity. Indeed, nitrogenous heterocycles
comprise the majority of pharmaceutical compounds,*® which gives rise to the possibility
that 1,2-ditosyl diazetidine being either in its original form or as a derivation could also be
synthetically useful in the development of new medicines. Similar structures include both
B-lactams and diazetidinones, which also hold medicinal value where heterocyclic ring
systems are found in biologically important agents including antiobiotics.?’

Herein we demonstrate the utilization of 1,2-ditosyl diazetidine as a selective

formaldimine precursor to carry out a Hosomi-Sakurai reaction.
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1.2 New modular approach for the synthesis of half-sandwich ruthenium
complexes

Throughout the past several decades the world of chemistry has exploded with new
ideas as well as new challenges. In the late twentieth century a new approach to linking
two molecules together, palladium cross coupling (Scheme 1.8), emerged as an innovative
leap forward in technology that replaced several classical methods with a method that is
more gentle, selective, and facile.?® Indeed, the 2010 Nobel prize in chemistry was awarded
to Richard Heck, Ei-Ichi Negishi, and Akira Suzuki for their remarkable accomplishments

in this area.?’

H H Pd(0) R! H H R', BaseH*X-
1. — T e w= + = ase
R'-X + Base + \—< , =2 L<R2
R
22 23 24 25

Scheme 1.8  An example Heck reaction for palladium cross coupling®

More recently a new area has been growing that promises to likewise replace
several classical methods with improved pathways of reactivity. This area, termed C-H
activation, involves the cleavage of a C-H bond followed by the highly selective,
subsequent, substitution for a functional group at the same position (Scheme 1.9).3° This
pathway utilizes high atom economy and high selectivity with catalytic amounts of a metal

catalyst. This type of reactivity offers the promise of replacing the need for functional
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groups in organic substitutions, thereby opening up a very large scope of potential
reactivities. This area, however, also encounters significant difficulties.’! The C-H bond is
very nonpolar and also very thermodynamically stable. As a result, utilizing it as a synthon
can be very challenging and often requires toxic metals and/or harsh conditions. On the
other hand, however, C-H activation removes the usage of a functional group as a reaction
partner and thereby removes biproducts which allows for the removal of other potential
waste streams.

C-H activation generally employs two types of reactivity: the functionalization of
previously unfunctionalized molecules (Scheme 1.9) and the functionalization of a
substrate employing some sort of directing group (Scheme 1.10).>? To accomplish these
functionalizations several different transition metal species have been employed including
Rh, Pd, Ni, Co, Ir, as well as Ru. In addition, several different directing groups been used
with impressive selectivity and good yields.*?*** These directing groups most typically
employ either a phosphorous, nitrogen, or a sulfur species due to the high c-donation as
well as the m-accepting ability. As a result of the directing influence, most of the
substitutions occur at positions ortho to the directing group (Scheme 1.10),?*> however some
cases have been shown that demonstrate meta substitution.*® In metal catalyzed C-H

activation of arenes it is the steric factors that guide the substitution. After initial
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Scheme 1.9  C-H activation on an unfunctionalized benzene*?
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Scheme 1.10 C-H activation to install vinyl groups ortho to an amide directing group on
a phenyl ring?®

coordination to the directing group the metal forms the most stable metallocycle possible,
which typically consists of a five or six membered ring and typically results in ortho

substitution as a result of the metallocycle (Schemes 1.10 & 1.11).3¢

[ B [ S
N _N_ _N _
M] M) Wy X N
H H — — X
M]
32 33

Scheme 1.11 Directed C-H activation at a meta position arene*®
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Several different transition metals have been used with varying results. Huw Davies
has made a very effective use of rhodium carbenes in several syntheses, including one
example substituting various groups onto unactivated alkanes.’” Additionally, Jin-Quan Yu
has made a very effective use of palladium catalyzed C-H activation in functionalizing
amido cyclopropanes using amino acid ligands to enhance stereoselectivity.*® Palladium
has also been widely and effectively used in the area of C-H activation due to its weak
coordinative properties and is one of the most common metals used in this area of
chemistry.3>** Ruthenium’s use as a catalyst in C-H activation has been growing as of late.
In 1986 Larry Lewis demonstrated a very early example of ruthenium dependent C-H
activation by arylating ethylene and propylene species with varying regioselectivities
(Scheme 1.12).% Later, a very significant work by Shinji Murai detailed the coupling of
several different olefins with various aryl ketones (Scheme 1.13)* demonstrating the very
significant potential for this pathway to catalyze a very large range of reactions. Indeed,
several additions to ruthenium catalyzed C-H activation have been forthcoming over the

33,41

past twenty years®>"' and most likely many more will ensue.
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Scheme 1.12 Ruthenium catalyzed ortho directed C-H activation arylation of ethylene
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Scheme 1.13 Highly regioselective ortho coupling of olefins and aryl ketone species*?

Herein we demonstrate a new modular approach to the construction of a series of

ruthenium complexes with the potential to participate in C-H activation reactions.

12
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CHAPTER II

RESULTS & DISCUSSION FOR:
NOVEL FORMALDIMINE PRECURSOR FOR USE IN A HOSOMI-SAKURAI
REACTION FOR THE FORMATION OF PHENYL-SUBSTITUTED

HOMOALLYLAMINES

2.1 Results & discussion

Our project began by first determining a metal catalyzed method for the opening of
the ditosyl diazetidine ring 1 that our lab had previously developed.! To accomplish this,
we set up a series of reactions containing only ditosyl diazetidine, solvent, and a metal
lewis acid (Scheme 2.1). After several hours at 100°C the reaction mixture was first tested
by thin layer chromatography (TLC) to indicate whether ditosyl diazetidine was consumed
and whether or not a new compound appeared, which would indicate ring opening
reactions. Secondly, the mixture was analyzed by '"HNMR spectroscopy to verify any
preliminary observations as well as to determine what product could have been formed
from the retro [2+2] addition reaction. From this information we were able to prove that
FeBr2 was the only Lewis acid to open the ditosyl diazetidine ring forming a trimer 2.
While the trimer was not a desirable end-product, it indicated that formaldimine was
present and just simply underwent a [2+2+2] reaction with itself in the absence of other

possible reactants.
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Scheme 2.1  Ring opening and subsequent trimerization

Table 2.1 Metal catalysts for ditosyl diazetidine 1 ring opening to form a trimer 2

Metal catalyst Yield of trimer
CoCl2 No reaction
CuBrn2 No reaction
InCl3 No reaction
FeBr Fully converted
Sc(OTf)3 No reaction
RuCls No reaction
AlCl3 No reaction
MnCl No reaction

Once we demonstrated a method for the ring opening of ditosyl diazetidine, we then
demonstrated its utility in a Hosomi-Sakurai reaction using allyltrimethyl silane and
formaldimine from the ditosyl diazetidine. Fortunately, we found that FeBr2 was able to
double, not only as the Lewis acid for ring opening, but also as the Lewis acid for the

activation of the formaldimine in the Hosomi-Sakurai reaction. Initial attempts at the
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reaction proved effective, however 'THNMR still indicated the presence of a trimethy]l silyl
group around 0 ppm. In order to mediate this problem, we included tetrabutylammonium
fluoride as a fluoride ion source to remove the trimethylsilyl group as well as acetic acid
as a proton source for the amine. This solved the problem and resulted in moderate yields
for both the simple allyltrimethylsilane and also a methyl-substituted allyltrimethylsilane

(Schemes 2.2 and 2.3 respectively).

1.) FeBr, 10 mol %, chlorobenzene,

. °C,12h
+ /\/S|M83 90°C, TsHN/\/\
TsN—=NTs 2.) H,0 (1.5 eq.), AcOH (1.5 eq.),
TBAF (1.5eq.), 1t, 1 h
1 3 64 % yield 4

Scheme 2.2 Hosomi-Sakurai reaction using formaldimine precursor 1 and
allyltrimethylsilane 3

1.) FeBr, 10 mol %, chlorobenzene,
. 90°C, 12 h /\/K
+ )\/S|Me3 TsHN

TsN—NTs 2.) H,0 (1.5 eq.), AcOH (1.5 eq.),
TBAF (1.5eq.), rt, 1 h
1 5 47 % yield 6

Scheme 2.3  Hosomi-Sakurai reaction using methyl-substituted allyltrimethylsilane 5

Following our success, we then tested several different phenyl-substituted
substrates 7a-p demonstrating low to excellent yields (Scheme 2.4 and Table 2.2). Phenyl-
substituted homoallylamines have thus far required either harsh conditions or a toxic metal
catalyst for their synthesis.>** In this work we were able to demonstrate a range of phenyl-
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substituted homoallylamines that used low-toxicity FeBr, while at the same time requiring
only mild conditions. These phenyl substituents mostly demonstrated yields from 50-80 %.
A few substrates demonstrated yields considerably outside this range, however. Of the two
substrates with low yields one substrate 71 carried a trifluoromethyl group at the ortho
position and the other 7m carried two methoxy groups at the meta positions on the phenyl
ring with yields of 36 %. Initially we had anticipated that electron rich substrates would
result in increased yield, however 7m proves otherwise. It is also clear that it is not a matter
of the substrate being electron poor either as 71 shows. When compared to Hammett
parameters it becomes very clear that neither electron donating substrates (7b and 7e) nor
electron withdrawing (7i, 7¢, and 71) substrates dominate. Additionally, from comparing
unsubstituted (7a) to very substituted substrates (71), a minor pattern emerges where the
more substituted substrate suffered low yield. However, considering the gap in yield
between 7a and some higher yield substrates (7d and 7n) it is also clear that ortho
substitution, as would be expected, does not control the extent of the reaction. These results
indicate that the substituent factors affecting yield are likely a combination of steric and
electronic factors. The two substrates 7d and 7n that were converted with very high yields
both carried a chlorine atom at the ortho position. Truly, it is very interesting that the

substituent 7k with two chlorine atoms in ortho positions did not show this high yield.
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NHTs

1.) FeBr;, (10 mol%), chlorobenzene, 90°C, 12h
H SiMes >
& s * 2.) H,0 (1.5 eq.), HOAc (1.5 eq.), TBAF (1.5 eq.)
1 7a-p

8a-p

Scheme 2.4  Substrate scope
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Table 2.2 Phenyl-substituted allyltrimethylsilane substrates 7a-p

entry product R yield (%)?
0,
1 @\"/\,NHTS 7a H 8%
2 >k©\n/\,NHTS 7b 4-t-Bu 54 %
NHTs
3 F3CK)\H/N 7c 3-CF, 66 %
Q\H/NNHTS
4 Cl 7d 2-Cl 90 %
Q\"/\/NHTS
5 Te 2-Me 75 %
Br.
6 \©\n/xNHTs 7f 4-Br 1%
cl
7 \Q\N/xNHTs 79 4-cl 68 %
8 F 60 %
\©\n/xNHTs 7h 4-F °
o ON 7i 4-NO 70 %
O\H/\,NHTS P2 °
Ph
10 O\H/NNHTS 7j 4-Ph 53 %
cl
" QLN/NNHTS 7k 2,5-Cl 64 %
cl
12 @\"/\/NHTS 7l 2-CFy 36 %
13 QMe 7m 3,5-OMe 36 %
MeO NHTs
14 7n 2-Cl, 3-OMe 94 %
MeO NHTs
cl
15 O 70 1-naphthyl 69 %
NHTs
16 7p 2-naphthyl 71 %
NHTs

After completing our substrate scope, we then attempted our reaction at a higher

scale (1/2 gram) with similar results for both the allyltrimethyl silane and the methyl-
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substituted allyltrimethylsilane. This shows that such a method would conceivably also be

useful at a large scale for industrial usage.

1.) FeBr, 10 mol %, chlorobenzene, TsHN
90°C, 12 h
[] + Kg
TsN—=NTs 1 ™S 2.) H,0 (1.5 eq.), AcOH (1.5 eq.), 6
TBAF (1.5 eq.), 1t, 1 h, 42%% yield

Scheme 2.5  '% gram scale Hosomi-Sakurai reaction using formaldimine precursor 1

2.2 Conclusion and future Work

In this work we have demonstrated the utility of 1,2-distosyl diazetidine as a
formaldimine precursor through a Hosomi-Sakurai reaction. In this work formaldimine
was generated in a slow-release manner that resulted in high selectivity and good yields for

the synthesis of phenyl-substituted homoallylamines.
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CHAPTER III

RESULTS & DISCUSSION FOR:
A NEW MODULAR APPROACH FOR THE SYNTHESIS OF HALF-SANDWICH

RUTHENIUM COMPLEXES

3.1 Synthesis of para-substituted complexes

To begin the synthesis of the complex ligand backbone, the bromide of dimethyl 5-
bromoisophthalate was converted to a BPin functional group by a Suzuki cross coupling
reaction with bis(pinacolato)diboron. The reaction yielde d 1 quantitatively and numerous
examples of a similar nature are extant in literature.'>* While initial attempts were carried
out using only a simple silica gel pad to filter out inorganic media, replacing the need for
an aqueous workup, it was later determined that a silica gel column was a superior approach
as the residual BPinBr had a similar polarity to 3 and would elute into the product mixture

with only a silica pad.
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CO,Me Pd(OAc), 2 mol% COOMe
DPPF 2.4 mol%

+ B,Pin, KOACc 3 eq. -

/E j\ 0
Br CO,Me THF, 100°C, Ny, 8h COOMe
>99% yield 0 1

Scheme 3.1  Synthesis of dimethyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
isophthalate (1)

1, in turn, was then used in another Suzuki cross coupling reaction to add a second
phenyl ring. For this reaction we found that the effect of the solvent was very important
getting substantially lower yield in our initial attempt with toluene/methanol/water 1:1:0.1
(26% vyield). We later screened various conditions for similar reactions (Table 1) and
settled on a dioxane/water mix for the meta-substituted ligand (Scheme 5.3 & Table 5.1),
which we then also began using in the para-substituted ligand. When tested in this scheme
we observed very good yield (>80%). Later we also investigated altering the base and
catalyst trying CsF and Pd(Phs)s resulting in a very slight increase in yield. In addition, we
found that shortening the time for the reaction to 3 hours also improved the yield

presumably due to decreased product homo-coupling (2).

COOMe
Pd(OAc), 2 mol%
COOMe | DPPF 2.4 mol% O
K,CO3 3 eq.
D S e e
O- Br ioxane/H,0 2: B

B COOMe 100°C, 3h '

le) .
1 81% yield 2

Scheme 3.2  Synthesis of dimethyl 4'-bromo-[1,1'-biphenyl]-3,5-dicarboxylate 2
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For the synthesis of meta-substituted ligands this step was altered using 1,3-

bromoiodobenzene instead of 1,4-bromoiodobenzene. This then resulted in a different

shape 5 that was intended to create a different cavity size for the Ru metal and other

potential substituents. This different cavity size could potentially affect the selectivity of

our complexes in whichever potential reactivity they are later employed. The remainder of

the steps for both para and meta-substituted ligands used the same conditions and had very

similar results.

COzMe

/@\ I

o. +

B CO,Me ©/
0

2

COQMe
Pd(OAC), 2 mol%
DPPF 2.4 mol% O
K,COs 3 eq.
2~¥3 0 e O CO,Me
Dioxane/H,0 2:1
100°C, 3h By
o
86% yield 15

Scheme 3.3 Synthesis of dimethyl 3'-bromo-[1,1'-biphenyl]-3,5-dicarboxylate 15

Table 3.1 Screening conditions for Scheme 3.3
Catalyst Base Solvent Yield
Pd(OAc)2, DPPF CsF Dioxane/H20 2:1 82%

Pd(Ph3)s CsF

Dioxane/H20 2:1 81%

Pd(OAc);, DPPF | K2CO3

Dioxane/H20 2:1 86%

Following the addition of a second phenyl ring another bromide group was also

replaced with a BPin under the same conditions as in Scheme 5.1 also demonstrating

quantitative yield.
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COOMe
COOMe Pd(OAc), 2 mol%

DPPF 2.4 mol%
KOACc 3 eq.
+ B,Pin, > O COOMe
O COOMe THF, 100°C, overnight 0
B >99% yield o

2

Scheme 3.4  Synthesis of dimethyl 4'-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)-[1,1'-
biphenyl]-3,5-dicarboxylate (3)

We attempted to react 3 in another Suzuki cross coupling to extend the aryl chain
and add a phosphine moiety that would act as an anchor for the ruthenium metal due to its
strong 6-donating and m-accepting abilites.* However, we found that the BPin group was
not reactive enough. As a result of this decreased reactivity we then converted the BPin
group into a boronic acid group using NH4OAc and NalO4 before carrying out another
Suzuki cross coupling to yield 4. Unfortunately, this step suffered from lowered yield as a
result of side product formation. After reaction screening, we discovered that the reaction
time was very important and at least 2.5 hours were needed, where longer time lengths
resulting in no desired product remaining at the end of the reaction. In addition, we tested

multiple solvent mixes (Table 5.2) ultimately settling on a THF/H20 mixture.
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CO,Me

COzMe
1.) NH4OAc 3 eq., NalO4 3 eq., O
Br Acetone/H,0 2:1, overnight CO,Me
©: + O CO,Me
PPh, PinB O

2.) K,CO3 3 eq., Pd(OAc), 2 mol% PPh,
3 DPPF 2.4 mol%,THF/H,0 4:1 4
100°C, 2.5 h
33% yield

Scheme 3.5  Synthesis of (3',5'-bis(methoxycarbonyl)-[1,1'-biphenyl]-4-yl)boronic acid
5)

Table 3.2 Screening conditions for step two of figure 3.5

Catalyst Base Solvent Yield
Pd(OAc)2, DPPF | KoCOs3 THF/H20 4:1 38%
Pd(OAc)2, DPPF | K2COs3 Dioxane/H20 4:1 39%
Pd(OAc)2, DPPF | KoCOs3 Toluene/MeOH/H20 1.0:0.8/0.2 | No reaction

Following this reaction, we converted the diester groups into amide functionalities
through a two-step process to yield the final ligand (5-9). The purpose of the amide was to
provide a directing group that can potentially interact with targeted substrates for increased
selectivity in future reactions.’ The first step of this installation involved the hydrolysis of
the diester into a dicarboxylic acid using high temperature and strongly basic conditions
(20 equivalents NaOH). This step required a significant amount of solvent (240 mL/g
diester) to achieve solubility of all species but otherwise ran smoothly. Toward the closure
of this work, however, our group began encountering the oxidation of the phosphine after
the hydrolysis. This was presumably due to the high temperatures and/or some minor
unnoticed alteration in procedure. It was important to circumvent this problem, however,

since the phosphine oxides were unable to bind to the ruthenium metal center. The oxidized
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phosphines were again reduced using 32 eq. of SiCls in toluene at reflux for 6 hours for a
quantitative yield.’

The next step involved the use of PyBOP and DIPEA for the conversion of the
dicarboxylic acid intermediate into the final amide. This step was run effectively in DMF
as is commonly described in literature, however, ethyl acetate also proved similarly useful
for many amines and did not require the removal of DMF by several water washes. The
only limitation to using ethyl acetate was solubility, where the solution would begin as

heterogenous and slowly become homogenous as time went on.

130°C, 5h

+ R.
O NH, >
PPh,

2.) PyBOP 2.4 eq., DIPEA 2.4 eq.,
4 DMF, rt, overnight

O 1.) NaOH 20 eq., H,O:THF 50/50
O COOMe

Scheme 3.6  Synthesis of amide ligands 5-9
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Figure 3.1  Ligands 5-9 and 18-22

Once the ligand was synthesized, we then used it to coordinate RuCls xH20 in

another two-step process. For the first step we simply mixed the ligand with a ruthenium-
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coordinated arene in the absence of light, which added the Ru metal onto the phosphine
but not onto the aryl ring. After separation of the intermediate from the rest of the reaction
media by silica gel column chromatography, 650 lumin light from a desk lamp was shone
onto the intermediate which caused the Ru metal to finally add to the aryl species as well.
Successful metalation was evident through both 'HNMR, *CNMR, and *'PNMR
spectroscopy as the chemical shifts for the aryl hydrogens moved upfield with the
additional electron density from the Ru metal. Conversely, the phosphorous chemical shift
moved downfield to 50 ppm from -13 ppm indicating an electron withdrawing effect from
the Ru metal. After metalation it was observed that after a variable amount of time the
complexes tended to develop a problem with serious insolubility in most solvents. It seems
likely that these complexes were dimerizing when this occurs. Interestingly though, these
complexes were still able to catalyze preliminary screening reactions becoming
homogenous over the course of the reaction. It was discovered that these complexes would
dissolve in a CHCl3/MeOH mix. Whenever several (~5-6) drops of MeOH were added to
the CHCI3 the complex would begin to dissolve. Once the complexes were redissolved we
discovered that they would again become soluble in CHCI3 for a time (usually a matter of
days or several hours). This finding seems to support the idea that the complexes dimerize
and evinces that the MeOH is able to break up the dimers. This solvent system was also

carried into our NMR solutions in order to fully dissolve the entire sample.
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( i /@COOMe
1.) 2 eq.

HN (0]
dimer
RUC|2
CHCl3, dark, rt, 30 min
(0] >
2.) LED 650 lumins, rt
HN CHCl3, overnight
O 60% yield
PPh,
7 12

Scheme 3.7  Synthesis of metalated complex 12
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Figure 3.2  Metal complexes 10-14 and 23-24

Following synthesis these complexes both 25 and 27 demonstrated diastereomers.

In 25 these diastereomers were very readily isolabile from each other by silica gel
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chromatography, however, the diastereomers of 27 proved nearly identical on silaca gel.
Unfortunately, as a result of the high difficulty of separation, 27 was not separated into its
isomeric forms. However, it does demonstrate further evidence that chirality can be
controlled in these metal complexes.

Upon inspection of the complexes 10-14 and 23-27 one can observe several
different functionalities which are intended to provide the potential for various reactivities.
The amide groups on each complex are intended to interact via hydrogen bonding or by
dipole-dipole interactions with functional groups on the potential substrate thus linking the
two species for the formation of a metallocycle intermediate and subsequent C-H
activation. For complexes 26 and 13 the nearby ester groups would increase the N-H acidity
possibly rendering them to higher selectivity with hydrogen bond acceptors. The
diastereotopic complexes of 25 also present the possibility of asymmetric reactivity in the
future. One other factor that would affect potential C-H activation is the steric bulk and
shape resulting from the amide group and the linear vs. curved shape of the aryl backbone.
These steric factors could direct the approach and the coordination of the potential substrate
species thus leading to various forms of selectivity (e.g. interact with one functional group
over another, meta vs. ortho substitution, etc.). Indeed, while hopeful, these ideas are very

preliminary as further testing remains to be done.
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3.2 Conclusion and future work

Our group has demonstrated the synthesis of a range of ruthenium complexes with
the potential for C-H activation. Each complex required 6 with high yields in each step

except for the 5™ step. Future work will be carried out in the utilization of these complexes

as potential catalysts.
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CHAPTER IV

EXPERIMENTAL PROCEDURES FOR HOSOMI-SAKURALI

4.1 General considerations:
4.1.1 General experimental methods:

Unless otherwise noted, all solvents were dried with sodium benzophenone and
distilled before use. All reactions were set up under argon atmosphere, utilizing glassware
that was flame-dried and cooled under vacuum. All non-aqueous manipulations were using
standard Schlenk techniques. Reactions were monitored using thin-layer chromatography
(TLC) on Silica Gel plates. Visualization of the developed plates was performed under UV
light (254 nm) or KMnOs stain. Silica-gel flash column chromatography was performed

on SiliCycle Inc. 40-63 pum silica gel.

4.1.2 Materials:
Unless otherwise indicated, starting catalysts and materials were obtained from
Sigma Aldrich, Oakwood, Strem, or Acros Co. Ltd. Moreover, commercially available

reagents were used without additional purification.
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4.1.3 Instrumentation:

All NMR spectra were run at 500 MHz () CNMR) in CDCI; solution. 'H NMR
spectra were internally referenced to TMS. '3C NMR spectra were internally referenced to
the residual solvent signal. Data for 'TH NMR are reported as follows: chemical shift (&
ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m= multiplet, br = broad),
coupling constants (J) were reported in Hz. High resolution mass spectra (HRMS) were
recorded on Bruker MicrOTOF-QII mass instrument (ESI & EI). Gas Chromatograph Mass
Spectrometry analysis were done on Shimdzu GCMS- QP2010 and ESI was the ionization

method.

4.2 General procedure for the preparation of 1,2-ditosyl-1,2-diazetidine

Py
TsNHNH, +  TsCl — > TsNHNHTs
0°C, DCM

Scheme 4.1  Formation of ditosylhydrazine

Tosyl chloride (174 mmol) was added to tosylhydrdazine (139 mmol) in
dichloromethane (242 mL) in an ice bath. Pyridine (14.1 mL) was added dropwise in a
temperature range of 0-10 °C. TLC analysis was done to monitor the reaction. A mixture
of water (250 mL) and hexane (250 mL) was added to the solution and stirred vigorously
for 30 minutes. The solution was then suction filtered and washed with a 1:1 ratio of
acetone and water (100 ml). The crystals were then added to acetone (320 mL) and boiled

at 80 °C. Water (150 mL) was added while stirring, and the solution was placed in an ice
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bath for an hour. The solution was then suction filtered and washed with a small amount

of cold diethyl ether.

nBuLi ]
TsNHNHTs + B B — - N—N

-20°C, DMF " Ts

Scheme 4.2  Ring formation of 1,2-ditosyl diazetidine

Under nitrogen atmosphere, butyl lithium (2.5 M in hexanes, 11.2 mL, 28 mmol)
solution was added drop wise to a solution of 1,2-ditosylhydrazine (12.9 mmol) in
anhydrous dimethylformamide (50 mL) at -20°C via gas tight syringe, and let it stir for 15
minutes. 1,2-Dibromoethane (1.33 mL, 15 mmol) was then added dropwise to the solution
at -20 °C over 10 minutes. The solution was then stirred overnight at -20 °C. This solution
was then allowed to warm to room temperature. The reaction mixture was then added to a
mixture of water (240 mL) and ammonium chloride (4.8g, ~90 mmol) in a beaker. The
solution was then vacuum filtered and washed with water (3 x 50 mL), and then washed
with ethanol (3 x 50 mL). Then the solid were washed with dichloromethane (50 mL) into
a clean filter flask, and the filtrate was collected as a yellow liquid. 25 mL of the
dichloromethane was then evaporated from the solution. Ethanol (60 mL) was then added
to the solution and the dichloromethane was completely evaporated from the solution. The
solution containing the solid was then suction filtered and washed with ethanol (2 x 30 mL)
and then washed with hexane (20 mL). 1,2-Ditosyl-1,2-diazetidine was produced in 70 %

yield. 'HNMR (500 MHz, CDCls) § 7.93 (d, J = 8.3 Hz), 7.44 (d, J = 8.1 Hz), 3.69 (s),
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2.51 (s). 3CNMR (126 MHz, CDCl3) & 145.70, 130.35, 129.76, 129.30, 47.81, 21.84.

HRMS (ESI) [M+Na] Clacd for Ci6H18N204S2:389.0600, found 389.0600.

4.3 Catalytic synthesis of homoallylic amines with 1,2-Ditosyl-1,2-diazetidine and
different types of styrene derivatives.

N-(but-3-en-1-yl)-4-methylbenzenesulfonamide'
TsSHN” "X
An oven dried Schlenk tube was charged with catalyst FeBr2 (2.2 mg, 10 mol %) and 1,2-
ditosyl-1,2-diazetadine (36.6 mg, 0.1 mmol). The Schlenk tube was vacuumed to remove
air and filled with nitrogen. The Teflon screw cap was replaced with a rubber septum and
allyl trimethylsilane (0.3 mmol) and 1 mL of chlorobenzene were added and the Schlenk
tube was then purged with nitrogen for 1 minute and the rubber septum was replaced with
a Teflon screw cap. 1.5 equivalence H20, 1.5 equivalence of acetic acid and 1.5
equivalence of tetrabutylammonium fluoride were added to the reacton mixture and stirred
for 1 hour. The reaction mixture was purified by flash chromatography with 5:1 hexane
and ethyl acetate as mobile phase (14.5 mg, 64% yield). "THNMR (500 MHz, CDCIs) §
7.75 (d, J= 8.3 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 5.63 (ddt, /= 17.1, 10.2, 6.9 Hz, 1H),
5.28 —4.88 (m, 1H), 4.59 (t, /= 5.6 Hz, 1H), 3.02 (q, J = 6.6 Hz, 1H), 2.44 (d, /= 7.6 Hz,
2H), 2.20 (q, J = 6.7 Hz, 1H).I3CNMR (125 MHz, CDCl3) & 143.44, 136.96, 134.18,

129.72,127.13, 118.14, 42.09, 33.60, 21.53.
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4-Methyl-N-(3-methylbut-3-en-1-yl)benzenesulfonamide?

TsHN“/K

Compound was formed using the previous method (22.6 mg, 47% yield).! 'THNMR (500
MHz, CDCl3) 6 7.75 (d, J= 8.2 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2H), 4.72 (d, J = 75.4 Hz,
1H), 4.52 (t, /= 5.5 Hz, 1H), 3.05 (dd, J = 12.8, 6.6 Hz, 2H), 2.43 (s, 3H), 2.15 (t, /= 6.7
Hz, 2H), 1.60 (s, 3H)._'3CNMR (125 MHz, CDCls) & 143.43, 141.48, 136.87, 129.71,

127.14, 113.21,40.52, 37.18, 21.74, 21.53

General procedure for the synthesis of trimethyl(2-arylallyl)silane derivatives.

Aryl triflates.
-
R—'—\ % O\\s”/o id - N
! / + O: - / N\ -
20" "CF, DCM, 20 mL, 24 h, rt OTf
OH FaC

Scheme 4.3  Synthesis of aryl triflates
Phenyl triflate and its derivatives (R = H 1a, t-Bu 1b, 3-CF; 1¢, 2-Cl 1d, 2-Me 1e, 4-Ph
1h, 2-Cl, 4-OMe 1i, 3-5-OMe 1j, 4-NO: 1k, 4-F 11, 2,6-CI 1m, 2-CF3 1n, 4-CI 10, 4-Br

1p) were prepared according to the literature method for low to excellent yields.' Naphthyl
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and 2-Naphthyl substituents were also prepared using this method in moderate to good

yields.?

Trimethyl(2-arylallyl)silane derivatives.

oTf TEA (2 eq.), Pd(OAG), (3 mol%), siu
N — DPPF (13 mol%) N €3
R T e > M
= SIMe3 R |
CH,CN, 20 h; 60 °C %

Scheme 4.4  Synthesis of phenyl-substituted allylsilanes

Various trimethyl(2-arylallyl)silane derivatives were synthesized by Heck reaction with
aryl triflate 1a-e, (1.25 mmol), allyltrimethylsilane (6.1 mmol), TEA (2 eq.), Pd(OAc.) (3
mol%), and DPPF (13 mol%) in acetonitrile at 60°C for 20 hours according to the general

literature method.*

Trimethyl(2-phenylallyl)silane (2a).*

SiMe3

Compound 2a was prepared according to the general literature method. '"HNMR (300
MHz, CDCls) 8 7.38 — 7.32 (m, 2H), 7.29 — 7.16 (m, 3H), 5.08 (d, /= 1.6 Hz, 1H), 4.82 (s,

1H), 1.97 (s, 2H), -0.15 (s, 9H).

44

www.manaraa.com



(2-(4-(tert-butyl)phenyl)allyl)trimethylsilane (2b).*

SiMe3

Compound 2b was prepared from 1b (2.70 g, 9.57 mmol) and allyl trimethylsilane (7.42
mL, 46.7 mmol) forming a yellow liquid (1.62 g, 69%). "HNMR (300 MHz, CDCl3) &
7.36-7.35 (m, 4H), 5.17 (d, J = 1.74 Hz, 1H), 4.86 (d, J = 1.56 Hz, 1H), 2.04 (d, J = 0.90
Hz, 2H), 1.35 (s, 9H), -0.05 (s, 9H). BCNMR (126 MHz, CDCl3) § 150.16, 146.23, 139.70,
128.09, 126.35, 125.92, 125.20, 125.15, 109.33, 34.48, 31.38, 25.96, -1.33. HRMS (ESI):

Found: m/z 247.1877. Calcd for Ci¢H27Si: (M+H) 247.1877.

Trimethyl(2-(3-(trifluoromethyl)phenyl)allyl)silane (2¢).

SiM93

CF4
Compound 2¢ was prepared from 1c (368 mg, 1.25 mmol) and allyl trimethylsilane (870
uL, 5.47 mmol) forming a yellow liquid (96.5 mg, 30% yield). 'THNMR (500 MHz, CDCl3)
3 7.66 (s, 1H), 7.61 (d, J = 7.79 Hz, 1H), 7.53 (d, J = 7.76 Hz, 1H), 7.44 (t, J = 7.76 Hz,
1H), 5.21 (s, 1H), 4.98 (s, 1H), 2.06 (s, 2H), -0.07 (s, 9H) PCNMR (126 MHz, CDCl3) &
145.38 ,143.51, 130.52 (q, J=32.06 Hz), 129.55, 128.84, 128.59, 124.25 (q, J = 272.79
Hz), 123.89 (q, J = 3.82 Hz), 123.05 (q, J = 3.80 Hz), 111.60, 26.07, -1.46. HRMS (ESI):

Found: m/z 259.1120. Caled for Ci3HigF3Si: (M+H) 259.1124.
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(2-(2-chlorophenyl)allyl)trimethylsilane (2d).

SiMe;
Cl
Compound 2d was prepared from 1d (326 mg, 1.25 mmol) and allyl trimethylsilane (970
uL, 6.1 mmol) forming a yellow liquid (176.5 mg, 63% yield). 'THNMR (500 MHz, CDCl3)
0 7.39-7.34 (m, 1H), 7.27-7.17 (m, 3H), 5.08 (s, 1H), 4.91 (s, 1H), 2.07 (s, 2H), -0.07 (s,
9H). BCNMR (126 MHz, CDCl3) & 146.21, 143.17, 131.90, 130.34, 129.75, 128.10,
126.47, 113.93, 27.99, -1.45. HRMS (ESI): Found: 225.0860. Calcd. for Ci2H1sCISi:

(M+H) 225.0861.

Trimethyl(2-(o-tolyl)allyl)silane (2¢).

SiMe3

Compound 2e was prepared from 1e (300 mg, 1.25 mmol) and allyl trimethylsilane (970
uL, 6.1 mmol) forming a yellow liquid (120.1 mg, 47% yield). 'THNMR (500 MHz, CDCl3)
0 7.18-7.15 (m, 4H), 5.04 (s, 1H), 4.80 (s, 1H), 2.38 (s, 3H), 1.94 (s, 2H), -0.06 (s, 9H).
I3CNMR (126 MHz, CDCl3) & 147.80, 144.39, 134.49, 130.21, 128.41, 126.68, 125.35,
112.42, 28.78, 20.18, -1.32. HRMS (ESI): Found: m/z 243.0965. Calcd for Ci3H20SiK:

(M+K) 243.0965.
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Trimethyl(2-(naphthalen-1-yl)allyl)silane

SiM63

Compound 2f was prepared from 1f (345 mg, 1.25 mmol) and allyl trimethylsilane (970uL,
6.1 mmol) forming a yellow liquid (257.8 mg, 86% yield). 'THNMR (500 MHz, CDCl3) &
8.20 (d, J = 7.8 Hz, 1H), 7.93 — 7.84 (m, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.59 — 7.48 (m,
2H), 7.48 — 7.43 (m, 1H), 7.38 (d, J= 7.0 Hz, 1H), 5.27 (d, /= 1.0 Hz, 1H), 5.07 (d, J =
1.1 Hz, 2H), 2.19, -0.06 (s, 9H). 3CNMR (126 MHz, CDCl3) & 146.79, 142.95, 133.96,

131.00, 128.49, 127.34, 126.23, 125.70, 125.64, 125.30, 125.18, 113.73, 29.86, -1.22.°

Trimethyl(2-(naphthalen-2-yl)allyl)silane®

l ! SiMe,

Compound 2g was prepared from 1g (345 mg, 1.25 mmol) and allyl trimethylsilane
(970uL, 6.1 mmol) forming a yellow liquid (170.9 mg, 57% yield). "HNMR (300 MHz,
CDCIl3) 6 7.94 — 7.81 (m, 3H), 7.66 (d, J = 8.6 Hz, 1H), 7.57 — 7.44 (m, 3H), 5.36 (s, 1H),
5.05 (s, 1H), 2.21 (s, 2H), -0.00 (s, 9H). 3CNMR (126 MHz, CDCl3) § 146.36, 139.93,

133.34, 132.79, 128.19, 127.64, 127.54, 126.04, 125.71, 124.94, 110.75, 26.10, -1.27.
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(2-(biphenyl-4-yl)allyl)trimethylsilane’

! SiMe3

Compound 2h was prepared from 1h (378 mg, 1.25 mmol) and allyl trimethylsilane
(970uL, 6.1 mmol) forming a yellow liquid (177.7 mg, 53% yield). 'THNMR (500 MHz,
CDCl3) 6 7.65 (d, J = 7.3 Hz, 2H), 7.61 — 7.56 (m, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.50 —
7.45 (m, 2H), 7.40 — 7.34 (m, 1H), 5.25 (d, /= 1.1 Hz, 1H), 4.94 (s, 1H), 2.09 (s, 2H), -
0.02 (s, 9H). BCNMR (126 MHz, CDCl3) & 146.08, 141.65, 140.79, 139.93, 128.80,
128.77, 127.29, 127.23, 127.20, 127.02, 126.96, 126.76, 126.71, 125.93, 110.11, 26.01, -

1.30.

(2-(2-chloro-4-methoxyphenyl)allyl)trimethylsilane

SiMes
MeO Cl
Compound 2i was formed from 1i (363 mg, 1.25 mmol) and allyl trimethylsilane (970uL,
6.1 mmol) forming a dark orange liquid (18 1mg, 57% yield). "HNMR (500 MHz, CDCl3)
07.15(d,J=8.5Hz, 1H), 6.92 (s, 1H), 6.77 (d, J= 8.5 Hz, 1H), 5.05 (s, 1H), 4.88 (s, 1H),
3.82 (s, 3H),-2.05 (s, 2H), -0.07 (s, 9H). BCNMR (126 MHz, CDCl3) & 158.95, 145.74,

135.50, 132.41, 130.88, 114.93, 113.73, 112.55, 55.49, 28.22, -1.43.

48

www.manaraa.com



(2-(3,5-dimethoxyphenyl)allyl)trimethylsilane

MeO SiMe,

OMe
Compound 2j was formed from 1j (358 mg, 1.25 mmol) and allyl trimethylsilane (970uL,
6.1 mmol) forming a dark orange liquid (228.6 mg, 91% yield). HINMR (500 MHz,
CDCls) & 6.58 (s, 2H), 6.40 (s, 1H), 5.15 (s, 1H), 4.88 (s, 1H), 3.83 (s, 6H), 2.00 (s, 2H), -
0.05 (s, 9H). C3NMR (126 MHz, CDCl3) § 160.42, 146.60, 145.10, 110.23, 104.82, 99.05,
55.30, 31.58, 26.21, 22.65, 14.11, -1.41. HRMS (ESI): Found m/z 273.1281. Calcd. for

C14H2202SiNa: (M+Na) 273.1281.

trimethyl(2-(4-nitrophenyl)allyl)silane

SiMej
O,N
Compound 2k was formed from 1k (1.25 mmol, 339 mg) and allyl trimethyl silane (970uL,
6.1 mmol) forming a dark orange liquid (178.8 mg, 61% yield). 'HNMR (500 MHz,
CDCl) 6 8.19 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.9 Hz, 2H), 5.28 (d, /= 1.0 Hz, 1H), 5.07
(d, J=1.0 Hz, 1H), 2.07 (d, J = 0.9 Hz, 2H), -0.07 (s, 9H). BCNMR (126 MHz, CDCl3) §
149.45, 145.01, 134.59, 129.32, 127.03, 126.25, 123.54, 123.52, 113.64, 25.98, -1.43.

HRMS (ESI): Found m/z 258.0931. Calcd. for C12H17NO2SiNa : (M+Na) 258.0921.

49

www.manaraa.com



trimethyl(2-(4-nitrophenyl)allyl)silane’

SiMes

E
Compound 21 was formed from 11 (1.25 mmol, 305 mg) and allyl trimethylsilane (970uL,
6.1 mmol) forming a yellow liquid (165 mg, 54% yield). HINMR (500 MHz, CDCl3)
7.39 (dd, J= 8.7, 5.5 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 5.10 (s, 1H), 4.88 (s, 1H), 2.02 (s,
2H), -0.07 (s, 9H). 3CNMR (126 MHz, CDCl3)  162.18 (d, J = 245.7 Hz), 145.64, (d, J

=3.3 Hz), 127.88 (d,J=7.9 -Hz), 114.96, 114.79, 110.04, 26.37, -1.41.

(2-(2,6-dichlorophenyl)allyl)trimethylsilane

Cl
SiMe3

Cl
Compound 2m was formed from 1m (1.25 mmol, 369 mg) and allyl trimethylsilane
(970uL, 6.1 mmol) forming a yellow liquid (137.8 mg, 43% yield). '"HNMR (500 MHz,
CDCl) 6 7.32 (d, /= 8.0 Hz, 2H), 7.12 (t, /= 8.0 Hz, 1H), 5.29 (d, /= 1.2 Hz, 1H), 4.94
(s, IH), 1.98 (d, J = 0.6 Hz, 2H), 0.04, (s, 9H). ¥*CNMR (126 MHz, CDCl3) & 142.34,

133.73, 130.50, 128.77, 128.23, 128.13, 126.93, 116.27, 27.77, -1.25.

trimethyl(2-(2-(trifluoromethyl)phenyl)allyl)silane®

SiMe3

CF3
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Compound 2n was formed from 1n (1.25 mmol, 368 mg) and allyl trimethylsilane (970uL,
6.1 mmol) forming a colorless liquid (44.2 mg, 14% yield). '"HNMR (500 MHz, CDCl3) §
7.65(d, J=7.9 Hz, 1H), 7.48 (t, J=7.5 Hz, 1H), 7.37 (t, J=7.6 Hz, 1H), 7.29 (d, /= 6.5
Hz, 1H), 5.07 (s, 1H), 4.87 (s, 1H), 1.98 (s, 2H), -0.03 (s, 9H). 3CNMR (126 MHz, CDCl3)
0 146.11, 143.98 (q, J = 2.1 Hz), 143.97, 131.29, 130.56, 127.50 (q, /= 30.2 Hz), 126.92,

(q, /=52 Hz), 124.43 (q, J=274.7 Hz), 123.34, 121.16, 113.79, 29.09, -1.31.

(2-(4-chlorophenyl)allyl)trimethylsilane®

SiMe;
Cl
Compound 20 was formed from 10 (1.25 mmol, 326 mg) and allyl trimethylsilane (970uL,
6.1 mmol) forming a colorless liquid (157.4 mg, 56% yield). 'THNMR (500 MHz, CDCl3)
0 7.36 (d,J=28.7 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 5.14 (d, /= 1.4 Hz, 1H), 4.90 (d, J =
1.1 Hz, 1H), 2.02 (d, J = 0.8 Hz, 2H), -0.07 (s, 9H). *CNMR (126 MHz, CDCl3) § 145.51,

141.24, 132.94, 128.23, 127.62, 110.62, 26.10, -1.39.

(2-(4-bromophenyl)allyl)trimethylsilane’

SiMe;
Br
Compound 2p was formed from 1p (1.25 mmol, 337 mg) and allyl trimethylsilane (970uL,
6.1 mmol) forming a yellow liquid (79.9 mg, 30% yield). 'THNMR (500 MHz, CDCIs) &

7.44 (d,J=28.5 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.14 (d, J= 1.3 Hz, 1H), 4.90 (d, J= 1.0
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Hz, 1H), 2.01 (s, 2H), -0.07 (s, 9H). 3\CNMR (126 MHz, CDCl3) § 145.56, 141.71, 131.19,

127.98, 121.09, 110.69, 26.03, -1.39.

General procedures for the synthesis of homoallylamines

SiMe3

[NTs R X 1. FeBr; (10 mol%), chlorobenzene, 12 h, 90 °C
+ e P

2. H,0 (1.5 eq.), HOAc (1.5 eq.), TBAF (1.5 eq.)

Scheme 4.5  Synthesis of substituted homoallylamines

NHTs

| N
R |
/

An oven dried Schlenk tube was charged with catalyst FeBr2 (10 mol %) and 1,2-ditosyl-

1,2-diazetadine(0.05 mmol). The Schlenk tube was then vacuumed to remove air followed

by refilling with nitrogen. The Teflon screw cap was replaced with a rubber septum and

chlorobenzene (1mL) and silane (0.15 mmol) were added to the Schlenk tube. The Schlenk

tube was then purged with nitrogen for 1 minute and the rubber septum was replaced with

a Teflon screw cap. The reaction mixture was then stirred at 90 °C for 12 h. After the 12

hours H20 (1.5 eq.), acetic acid (1.5 eq.), and tetrabutylammonium fluoride (1.5 eq) were

added and the mixture was allowed to stir at room temperature for 1 hour. This was then

separated by silica gel chromatography (5:1 ratio of hexane: ethyl acetate).
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4-methyl-N-(3-phenylbut-3-en-1-yl)benzenesulfonamide (3a).

NHTs

Compound 3a was prepared from diazetidine (18.3 mg, 0.05 mmol) and 2a (28.6 mg, 0.15
mmol) forming a yellow gel (23.6 mg, 78% yield). 'HNMR (500 MHz, CDCl3) & 7.66 (d,
J=18.25Hz, 2H), 7.31-7.23 (m, 7H), 5.34 (s, 1H), 5.03 (d, J = 1.05 Hz, 1H), 4.39 (br, 1H),
3.05 (dt,J = 6.60 Hz, 2H), 2.66 (t,J = 6.76, 2H), 2.40 (s, 3H). 3CNMR (126 MHz, CDCls)
0 144.41, 143.37, 139.52, 136.86, 129.68, 128.53, 127.87, 127.06, 126.03, 115.17, 41.30,
35.27, 21.54. HRMS (ESI): Found: m/z 324.1027. Calcd. for C17H19NO2SNa: (M+Na)

324.1029.

N-(3-(4-(tert-butyl)phenyl)but-3-en-1-yl)-4-methylbenzenesulfonamide (3b).

NHTs

Compound 3b was prepared from diazetidine (18.3 mg, 0.05 mmol) and 2b (37.0 mg, 0.15
mmol) forming a yellow gel (19.2 mg, 54% yield). '"HNMR (500 MHz, CDCIs) 8 7.69-
7.66 (d, 2H), 7.32-7.29 (m, 1H), 7.27-7.23 (m, 3H), 7.23-7.19 (m, 1H), 5.33 (d, J = 0.99
Hz, 1H), 4.98 (d, J = 1.05 Hz, 1H), 4.47 (t,J = 6.01 Hz, 1H), 3.06 (dt, J = 6.01 Hz, 2H),

2.65 (t,J = 6.64 Hz, 2H), 2.40 (s, 3H), 1.31 (s, 9H). BCNMR (126 MHz, CDCl3) § 151.01,
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144.05, 143.32, 136.97, 136.46, 129.66, 127.09, 125.67, 125.43, 114.45, 41.34, 35.21,
34.55, 31.30, 21.55. HRMS (ESI): Found: m/z 396.1391. Calcd. for C21H27NO2SK:

(M+K) 396.1394.

4-methyl-N-(3-(3-(trifluoromethyl)phenyl)but-3-en-1-yl)benzenesulfonamide (3c¢).

NHTs

F3C
Compound 3¢ was prepared from diazetidine (18.3 mg, 0.05 mmol) and 2¢ (38.8 mg, 0.15
mmol) forming a yellow gel (24.3 mg, 66 % yield). 'THNMR (500 MHz, CDCl3) & 7.68 (d,
J =28.16 Hz, 2H), 7.51 (d, J = 8.90 Hz, 2H), 7.45 (d, J = 7.81 Hz, 1H), 7.41 (t, J = 7.61
Hz, 1H), 7.27-7.23 (m, 2H), 5.40 (s, 1H), 5.14 (s, 1H), 4.57 (t, J = 5.91 Hz, 1H), 3.05 (dt,
J = 6.63 Hz, 5.91 Hz, 2H), 2.69 (t, J = 6.84 Hz, 2H), 2.40 (s, 3H). '*C NMR (126 MHz,
CDCI3) ppm BCNMR (126 MHz, CDCls) & 143.54, 143.23, 140.50, 136.72, 130.90 (q, J
= 31.94 Hz), 129.71, 129.34, 129.05, 127.04, 124.52 (q, J = 3.65 Hz), 124.02 (q, J =
273.42 Hz), 122.73 (q, J = 3.78 Hz), 116.634, 41.18, 35.12, 21.49. HRMS (ESI): Found:

m/z 408.0644. Calcd. for CisHisF3NO2SK: (M+K) 408.0644.
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N-(3-(2-chlorophenyl)but-3-en-1-yl)-4-methylbenzenesulfonamide (3d).

NHTs

Cl

Compound 3d was prepared from diazetidine (18.3 mg, 0.05 mmol) and 2d (38.8 mg, 0.15
mmol) forming a yellow gel (30.1 mg, 90% yield). 'THNMR (500 MHz, CDCl3) 6 7.70 (d,
J =8.15 Hz, 2H), 7.32 (d, J = 7.76 Hz, 1H), 7.30-7.25 (m, 2H), 7.21-7.13 (m, 2H), 7.02
(dd, J = 7.38, 1.35 Hz, 1H), 5.22 (s, 1H), 5.08 (s, 1H), 4.49 (br, 1H), 2.97 (dt, J = 6.35,
Hz, 2H), 2.59 (t, J = 6.50 Hz, 2H), 2.42 (s, 3H). 3CNMR (126 MHz, CDCls) § 144.07,
143.42, 140.06, 136.89, 131.99, 130.15, 129.73, 129.71, 128.74, 127.12, 126.80, 118.79,
40.87, 36.64, 21.56. HRMS (ESI): Found: m/z 374.0378. Calcd. for C17Hi1sCINO2SK:

(M+K) 374.0378.

4-methyl-N-(3-(o-tolyl)but-3-en-1-yl)benzenesulfonamide (3e).

NHTs

Compound 3e was prepared from diazetidine (18.3 mg, 0.05 mmol) and 2e (30.7 mg, 0.15
mmol) forming a yellow gel (23.6 mg, 75% yield). '"HNMR (500 MHz, CDCl3) & 7.69 (d,
J = 8.24 Hz, 2H), 7.28 (d, J = 8.02 Hz, 2H), 7.17-7.11 (m, 2H), 7.05 (dt, J = 6.99, 6.59,
2.29 Hz, 1H), 6.84 (d, J = 7.50 Hz, 1H), 5.15 (d, J = 1.39 Hz, 1H), 4.95 (d, J = 1.37 Hz,

1H), 4.44-4.35 (br, 1H), 2.98 (dt, J = 6.54, Hz, 2H), 2.48 (t, J = 6.59 Hz, 2H), 2.43 (s, 3H),
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2.20 (s, 3H). BCNMR (126 MHz, CDCls) & 146.12, 143.45, 141.10, 136.85, 134.75,
130.36, 129.73, 128.21, 127.35, 127.11, 125.63, 116.88, 40.98, 37.30, 21.56, 19.76.

HRMS (ESI): Found: m/z 354.0927. Calcd. for CisH21NO2SK: (M+K) 354.0927.

4-methyl-N-(3-(naphthalen-1-yl)but-3-enyl)benzenesulfonamide

TsHN
Compound 3f was formed from diazetidine (18.3 mg, 0.05 mmol) and 2f (0.15 mmol, 50.5
mg) forming a white solid (23.3 mg, 69% yield). 'HNMR (500 MHz, CDCIs) & 7.86 (dd,
J=15.6, 8.0 Hz, 2H), 7.75 (d, /= 8.2 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.50 — 7.42 (m,
2H), 7.35 - 7.30 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 6.9 Hz, 1H), 5.39 (s, 1H),
5.18 (s, 1H), 4.43 — 4.34 (br, 1H), 2.97 (dt, J = 6.4, 6.4 Hz, 2H), 2.66 (t, J = 6.6 Hz, 2H),
2.40 (,3H). 3CNMR (126 MHz, CDCl3) & 144.93, 143.38, 139.20, 136.75, 133.74, 130.88,
129.67, 128.50, 127.77, 127.04, 126.18, 125.89, 125.17, 118.49, 41.25, 38.04, 21.54.

HRMS (ESI): Found m/z 374.88. Calcd. for C21H21NO2S: (M+Na) 374.1185.
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4-methyl-N-(3-(naphthalen-2-yl)but-3-enyl)benzenesulfonamide

NHTs
Compound 3g was formed from diazetidine (18.3 mg, 0.05 mmol) and 2g (0.15 mmol, 50.5
mg) forming a white solid (24.1 mg, 71% yield). "HNMR (500 MHz, CDCl3) § 7.82 —7.73
(m, 3H), 7.67 (s, 1H), 7.60 (d, J = 8.2 Hz, 2H), 7.49 — 7.45 (m, 2H), 7.42 (dd, J = 8.6, 1.8
Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 5.50 (s, 1H), 5.15 (s, 1H), 4.44 (t, J = 5.8 Hz, (s, 1H),
3.12-3.05 (m, 2H), 2.79 (t, J = 6.7 Hz, 2H), 2.29 (s, 3H). *CNMR (126 MHz, CDCl3) §
144.15, 143.33, 136.57, 133.28, 132.95, 129.57, 128.17, 127.56, 126.99, 126.38, 126.19,
124.87, 124.20, 115.86, 41.29, 35.20. HRMS (ESI): Found m/z 374.1184. Calcd. for

C21H21NO2SNa: (M+Na) 374.1184.

N-(3-(biphenyl-4-yl)but-3-enyl)-4-methylbenzenesulfonamide

TsHN
Compound 3h was formed from diazetidine (18.3 mg, 0.05 mmol) and 2h (0.15 mmol,
56.6 mg) forming a white solid (20.1 mg, 53% yield). 'THNMR (500 MHz, CDCl3) § 7.67
(d,J=7.4Hz, 2H), 7.58 (d, J="7.7 Hz, 2H), 7.51 (d, J= 7.7 Hz, 2H), 7.47 — 7.42 (m, 2H),
7.35 (t, J=8.4 Hz, 3H), 7.27 — 7.20 (m, 2H), 5.41 (s, 1H), 5.06 (s, 1H), 4.52 (s, 1H), 3.08
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(dt, J = 6.4, Hz, 2H), 2.70 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H). 3CNMR (126 MHz, CDCls) §
143.84, 143.40, 140.69, 140.46, 138.29, 136.82, 129.68, 128.87, 127.51, 127.17, 127.08,
126.96, 126.44, 115.19, 41.34, 35.19, 21.50. HRMS (ESI): Found m/z 374.1184. Calcd.

for C21H21NO2SNa: (M+Na) 374.1185.

4-methyl-N-(3-(4-nitrophenyl)but-3-enyl)benzenesulfonamide

NO,

TsHN
Compound 3i was formed from diazetidine (18.3 mg, 0.05 mmol) and 2i (0.15 mmol, 35.3
mg) forming a yellow solid (23.2 mg, 70% yield). 'HNMR (500 MHz, CDCls) & 8.14 (d,
J=28.3 Hz, 2H), 7.67 (d, /= 8.1 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 7.26 (d, /= 4.8 Hz, 2H),
5.49 (s, 1H), 5.25 (s, 1H), 4.45 (br, 1H), 3.06 (dt, J = 6.6, 6.6 Hz, 2H), 2.73 (t, J = 6.8 Hz,
2H), 2.41 (s, 3H). BCNMR (126 MHz, CDCls) 6 147.28, 146.20, 143.69, 142.82, 136.71,
129.74, 127.06, 126.86, 123.82, 118.51, 41.18, 35.17, 21.52. HRMS (ESI): Found m/z

347.1061. Calcd. for Ci7H19N204S: (M+H) 347.1060.

N-(3-(3,5-dimethoxyphenyl)but-3-enyl)-4-methylbenzenesulfonamide

MeO OMe

TsHN
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Compound 3j was formed from diazetidine (18.3 mg, 0.05 mmol) and 2j (0.15 mmol, 37.6
mg) forming an orange gel (12.6 mg, 36% yield). 'HNMR (500 MHz, CDCl3) 8 7.67 (d, J
= 8.1 Hz, 2H), 7.25 (d, J = 9.2 Hz, 4H), 6.42 — 6.36 (m, 3H), 5.34 (s, 1H), 5.02 (s, 1H),
4.37 (s, 1H), 3.78, (s, 6H), 3.05 (dt, J= 6.5 Hz, 2H), 2.62 (t,J = 6.7 Hz, 2H), 2.41 (s, 3H).
I3CNMR (126 MHz, CDCl3) & 160.82, 144.49, 143.39, 141.77, 136.86, 129.67, 127.04,
115.49, 104.50, 99.63, 55.38, 41.34, 35.48, 21.53. HRMS (ESI): Found m/z 384.1237.

Calcd. for C19H24NO4S: (M+H) 384.1240.

N-(3-(2-chloro-4-methoxyphenyl)but-3-enyl)-4-methylbenzenesulfonamide

OMe

Cl

TsHN
Compound 3k was formed from diazetidine (18.3 mg, 0.05 mmol) and 2k (0.15 mmol,
38.2 mg) forming a yellow gel (32.9 mg, 94% yield). "HNMR (500 MHz, CDCl3) § 7.70
(d, /J=8.1 Hz, 2H), 7.28 (d, /= 8.1 Hz, 2H), 6.92 (d, /= 8.5 Hz, 1H), 6.86 (d, /= 2.3 Hz,
1H), 6.69 (dd, J=8.5,2.4 Hz, 1H), 5.19 (s, 1H), 5.05 (s, 1H), 4.45 —4.39 (m, 1H), 3.78 (s,
3H), 2.95 (dt, J = 6.3 Hz, 2H), 2.56 (t, J = 6.4 Hz, 2H), 2.43 (s, 3H). ¥CNMR (126 MHz,
CDCls) 6 159.40, 143.64, 143.39, 136.89, 132.56, 132.12, 130.66, 129.69, 127.12, 118.86,
115.02, 112.85, 55.56,40.87, 36.82, 21.55. HRMS (ESI): Found m/z 366.0925. Calcd. for

CisH21CINOsS: (M+H) 366.0925.
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N-(3-(4-fluorophenyl)but-3-enyl)-4-methylbenzenesulfonamide

F

TsHN
Compound 31 was formed from diazetidine (18.3 mg, 0.05 mmol) and 21 (31.3 mg, 0.15
mmol) forming a yellow gel (19.2 mg, 60% yield). HINMR (500 MHz, CDCl3) 6 7.66 (d,
J=18.2 Hz, 2H), 7.29 — 7.20 (m, 4H), 6.96 (t, J = 8.7 Hz, 2H), 5.29(s, 1H), 5.02 (s, 1H),
4.41(d,J=3.7Hz, 1H), 3.08 —2.99 (m, 2H), 2.64 (t,J= 6.7 Hz, 2H), 2.41 (s, 3H). C’NMR
(126 MHz, CDCl3) ¢ 162.29 (d, J = 248.2 Hz), 161.30, 143.23 (d, J = 14.2 Hz), 136.54,
135.32(d,J=3.3 Hz), 129.48, 127.52,127.45, 126.86, 115.26, 115.09, 40.96, 35.15, 21.32.

HRMS (ESI): Found m/z 320.1114. Calcd. for Ci7H19FNO2S: (M+H) 320.1115.

N-(3-(2,6-dichlorophenyl)but-3-enyl)-4-methylbenzenesulfonamide

Cl Cl

TsHN
Compound 3m was formed from diazetidine (18.3 mg, 0.05 mmol) and 2m (38.9 mg, 0.15
mmol) forming a yellow gel (23.8 mg, 64% yield). 'HNMR (500 MHz, CDCl3) § 7.73 (d,
J=8.2 Hz, 2H), 7.32 — 7.25 (m, 4H), 7.16 — 7.11 (m, 1H), 5.36 (s, 1H), 5.08 (s, 1H), 4.68
(t, J=5.9 Hz, 1H), 3.07 (dt, J = 6.4, 5.9 Hz, 2H), 2.53 (t, J = 6.4 Hz, 2H), 2.43 (s, 3H).

IBCNMR (126 MHz, CDCl3) & 143.43, 140.99, 139.01, 137.02, 133.98, 129.73, 128.97,
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128.17, 127.13, 120.05, 40.82, 36.26, 21.56. HRMS (ESI): Found m/z 392.0245. Calcd.

for C17H17CLa2NO2SNa: (M+Na) 392.0249.

4-methyl-N-(3-(2-(trifluoromethyl)phenyl)but-3-enyl)benzenesulfonamide

F3C

TsHN
Compound 3n was formed from diazetidine (18.3 mg, 0.05 mmol) and 2n (38.8 mg, 0.15
mmol) forming a yellow gel (18.1 mg, 49% yield). 'HNMR (500 MHz, CDCl3) 6 7.73 (d,
J=8.3 Hz, 2H), 7.62 (d, /= 7.8 Hz, 1H), 7.43 (t, J=7.5 Hz, 1H), 7.37 (t,J = 7.6 Hz, 1H),
7.30 (d, J = 8.0 Hz, 2H), 7.07 (d, /= 7.6 Hz, 1H), 5.18 (d, J = 0.8 Hz, 1H), 5.03 (s, 1H),
4.48 (br, 1H), 3.09 — 3.02 (m, 2H), 2.52 (t, J = 6.7 Hz, 2H), 2.43 (s, 3H). 3CNMR (126
MHz, CDCl) 6 143.50 (q, J = 7.4 Hz), 140.75, 136.82, 131.51, 130.29, 129.76, 127.88 (q,
J =29.9 Hz), 127.44, 127.13, 126.34 (q, J = 5.3 Hz), 124.43 (q, J=274.7 Hz), 117.85,
117.86, 40.69, 37.76, 21.55. HRMS (ESI): Found m/z 408.0640. Calcd. for

CisHisF3sNO2SK: (M+K)) 408.0642.

N-(3-(4-chlorophenyl)but-3-enyl)-4-methylbenzenesulfonamide

Cl

TsHN
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Compound 30 was formed from diazetidine (18.3 mg, 0.05 mmol) and 20 (33.7 mg, 0.15
mmol) forming a yellow gel (22.9 mg, 68% yield). 'HNMR (300 MHz, CDCl3) & 7.65 (d,
J =79 Hz, 2H), 7.24 (d, J = 9.8 Hz, 4H), 7.18 (d, J = 8.4 Hz, 2H), 5.33 (s, 1H), 5.06 (s,
1H), 4.48 — 4.39 (m, 1H), 3.02 (dt, J = 6.5, 6.5 Hz, 2H), 2.64 (t, J = 6.7 Hz, 2H), 2.42 (s,
3H). BCNMR (126 MHz, CDCls) & 143.52, 143.27, 137.88, 136.68, 133.73, 129.68,
128.65, 127.34, 127.04, 115.73, 41.14, 35.14, 21.55. HRMS (ESI): Found m/z 374.0376.

Calcd. for C17H18sCINO2SK: (M+K) 374.0378.

N-(3-(4-bromophenyl)but-3-enyl)-4-methylbenzenesulfonamide

Br

TsHN
Compound 3p was formed from diazetidine (18.3 mg, 0.05 mmol) and 2p (0.15 mmol, 57
mg) forming a yellow gel (27.1 mg, 71% yield). '"HNMR (500 MHz, CDCI3) & 7.65 (d, J
=8.2 Hz, 2H), 7.39 (d, /= 8.5 Hz, 2H), 7.27 - 7.23 (m, 2H), 7.12 (d, J = 8.5 Hz, 2H), 5.34
(s, 1H), 5.06 (s, 1H), 4.47 — 4.40 (m, 1H), 3.05 — 2.99 (m, 2H), 2.64 (t, J = 6.7 Hz, 2H),
2.42 (s, 3H). BCNMR (126 MHz, CDCl3) & 143.53, 143.33, 138.36, 136.67, 131.61,
129.69, 127.67, 127.04, 121.88, 115.81, 41.14, 35.09, 21.57. HRMS (ESI): Found m/z

380.0313. Calcd. for C17H19BrNO2S: (M+H) 380.0314.
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CHAPTER V

EXPERIMENTAL PROCEDURES FOR RUTHENIUM COMPLEXES

5.1 General considerations:
5.1.1 General experimental methods:

Unless otherwise noted, all solvents were dried with sodium benzophenone and
distilled before use. All reactions were set up under argon atmosphere, utilizing glassware
that was flame-dried and cooled under vacuum. All non-aqueous manipulations were using
standard Schlenk techniques. Reactions were monitored using thin-layer chromatography
(TLC) on Silica Gel plates. Visualization of the developed plates was performed under UV
light (254 nm) or KMnOs stain. Silica-gel flash column chromatography was performed

on SiliCycle Inc. 40-63 pum silica gel.

5.1.2 Materials:

Unless otherwise indicated, starting catalysts and materials were obtained from
Sigma Aldrich, Oakwood, Strem, or Acros Co. Ltd. Moreover, commercially available

reagents were used without additional purification.
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5.1.3 Instrumentation:

All NMR spectra were run at 500 MHz or 300 MHz in CDCl3 solution. "THNMR spectra
were internally referenced to TMS. '*CNMR spectra were internally referenced to the
residual solvent signal. Data for 'HNMR are reported as follows: chemical shift (3 ppm),
multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m= multiplet, br = broad),
coupling constants (J) were reported in Hz. High resolution mass spectra (HRMS) were
recorded on Bruker MicrOTOF-QII mass instrument (ESI & EI). Gas Chromatograph Mass
Spectrometry analysis were done on Shimdzu GCMS- QP2010 and ESI was the ionization

method.

5.2 Synthesis of para substituted complexes

COM PA(OAC)2 2 mol%

° DPPF 2.4 mol%

J@\b +  B,Ping KOAC 3 eq. -

Br 0sMe THF, 100°G, Mz, 8h OOMe
97% yield

Scheme 5.1  Synthesis of dimethyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
isophthalate (1)!

Solid starting materials, aryl bromide (5.46 g, 20 mmol), B2Pin2 (5.33 g, 21 mmol),
DPPF (266.0 mg 0.48 mmol), palladium acetate (90.0 mg, 0.4 mmol), and potassium
acetate (5.88 g, 60 mmol) were added to a schlenk tube followed by vacuum addition of
nitrogen atmosphere. Liquid components, THF (40 mL) were then added through a septum

and the reaction was stirred at 100°C overnight. The reaction was then diluted with hexane
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and run through a silica pad (pure ethyl acetate) to remove inorganic materials. Next, the
mixture was run through a silica gel column (5:1 hexane:ethyl acetate) to yield a white
solid. (6.2251 g, 97 % yield). 'THNMR (500 MHz, CDCl3) & 8.77 (t,J= 1.8 Hz, 1H), 8.64

(d,J= 1.7 Hz, 2H), 3.95 (s, 6H), 1.37 (s, 12H).

COOMe

Pd(OAC), 2 mol%
COOMe DPPF 2.4 mol%

. /@’l Kz2CO4 3 eq. OOMe
-
0 Br Dioxane 5mL Br
"B H,0 2.5mL
é v
100°C, 3h
75% yield

Scheme 5.2  Synthesis of dimethyl 4'-bromo-[1,1'-biphenyl]-3,5-dicarboxylate (2)

Solid starting materials, diester (1.0 g, 3.16 mmol), bromoiodobenzene (1.34 g,
4.74 mmol), palladium acetate (14.2 mg, 0.06 mmol), DPPF (42.1 mg, 0.076 mmol),
potassium carbonate (1.31 g, 9.99 mmol were added to a schlenk tube followed by vacuum
addition of nitrogen atmosphere. Liquid components, dioxane (5 mL), H2O (2.5 mL) were
then added through a septum and the reaction was stirred at 100°C for 3h. Dioxane was
next evaporated out of the mixture and then the reaction was washed with water. The
resulting aqueous phase was extracted with ethyl acetate (3x). The combined organic
phases were then dried and evaporated and then separated using silica gel chromatography
(hexane: ethyl acetate: DCM 8:1:1) to yield a solid product (829.3 mg, 75% yield).
THNMR (300 MHz, CDCl3) & 8.67 (t,J = 1.4 Hz, 1H), 8.42 (d, J = 1.4 Hz, 2H), 7.62 (d, J

=8.5 Hz, 2H), 7.53 (d, J= 8.6 Hz, 2H), 3.98 (s, 6H). 3CNMR (126 MHz, CDCl3) § 166.07,
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140.73, 137.93, 132.19, 132.03, 131.34, 129.64, 128.75, 122.68, 52.53. HRMS (ESI):

Found m/z 370.9889. Calcd. for CisHi3BrOsNa: (M+Na) 370.9889

COOMe
COOMe Pd(OAc), 2 mol%

DPPF 2.4 mol%
KOACc 3 eq.
+ ByPin, > O CoOMe
O COOMe THF, 100°C, overnight o)
Br >99% yield o

Scheme 5.3  Synthesis of dimethyl 4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-
[1,1'-biphenyl]-3,5-dicarboxylate (3)

Solid starting materials, diester (1.16 g, 3.32 mmol), B2Pin2 (917 mg, 3.49 mmol),
palladium acetate (15.5 mg, 0.066 mmol), DPPF (45.8 mg, 0.080 mmol), potassium
carbonate (1.012 g, 9.96 mmol) were added to a schlenk tube followed by vacuum addition
of nitrogen atmosphere. Liquid components, THF (8 mL) were then added through a
septum and the reaction was stirred at 100°C overnight. The inorganic media was next
filtered out of the mixture by using a silica pad (ethyl acetate). The resultant solution was
then evaporated and separated using silica gel chromatography (hexane: ethyl acetate 5:1)
to yield a solid product (839.7 mg, 64 % yield). 'THNMR (300 MHz, CDCl3) & 8.66, 8.48
(d,J=1.5Hz),7.92 (d,J=8.1 Hz), 7.67 (d, J = 8.2 Hz), 3.98, 1.38. 3CNMR (126 MHz,
CDCl3) 6 166.20, 141.72, 141.52, 135.48, 132.32, 131.19, 129.58, 126.41, 83.96, 83.49,
52.47,25.03, 24.89. HRMS (ESI): Found m/z 419.32. Calcd. for C22H25sBOsNa: (M+Na)

419.1636.
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COZMe

COQMe
1.) NH,OAc 3 eq., NalO,4 3 eq., O
Br Acetone/H,0 2:1, overnight CO,Me
@: + O CO,Me
PPhy PinB O

2.) K,CO3 3 eq., Pd(OAc), 2 mol%
DPPF 2.4 mol%, THF/H,0 4:1
100°C, 2.5 h
33% yield

PPh,

Scheme 5.4  Synthesis of dimethyl 2"-(diphenylphosphaneyl)-[1,1":4',1"-terphenyl]-3,5-
dicarboxylate (4)

Solid starting materials, boronic acid (314 mg,1.0 mmol), phosphine (376 mg,1.1 mmol),
K2COs3 (420 mg, 3.0 mmol), palladium tetrakis triphenylphosphine (23 mg, 0.02 mmol)
were added to a schlenk tube followed by vacuum addition of nitrogen atmosphere. Liquid
components dioxane (4 mL) and water (1 mL) were then added through a septum and the
reaction was stirred at 100°C for 30 min. The reaction was then washed with water. The
resulting aqueous phase was then extracted three times with ethyl acetate. The combined
organic layer was then dried and evaporated. Finally, the mixture was separated using silica
gel chromatography to yield a solid product (199.0mg, 38% yield). 'THNMR (500 MHz,
CDCl3) 0 8.65 (s, 1H), 8.48 (2H), 7.57 (d, J=7.9 Hz, 2H), 7.43 (t,J = 7.4 Hz, 1H), 7.39 —
7.36 (m, 8H), 7.32, 7.27 — 7.22 (m, 5H), 7.11 — 7.07 (m, 1H), 3.98 (s, 6H). *CNMR (126
MHz, CDCI3) 6 166.26, 147.48 (d, J=28.4 Hz), 141.78 (d=28.4 Hz), 141.57, 137.58 (d,
J=19.9 Hz), 137.41, 135.89 (d, J= 14.3 Hz), 134.24, 133.92 (d, J=19.8 Hz), 132.21, 131.12,
130.42 (d, J=4.0 Hz), 130.08 (d, 4.9 Hz), 129.28, 128.81, 128.56, 128.43 (d, J=6.8 Hz),
127.61, 126.33, 52.45. 3'PNMR (121 MHz, CDCl3) § -13.45. HRMS (ESI): Found m/z

565.1327. Calcd. for C34H2704PCl: (M+Cl) 565.1330
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COOH

‘ COOH NH PyBOP 2.4 eq. O )

2 DIPEA 2.4 eq. O
+ HN
® - ©
EtOAc, rt, 3h
PPh, ¢ PPh;

1%

Scheme 5.5  Synthesis of 2"-(diphenylphosphaneyl)-N3, N5-diphenyl-[1,1":4',1"-
terphenyl]-3,5-dicarboxamide (5)

Solid starting materials, phosphine (50 mg, 0.1 mmol), PyBOP (124.9 mg, 0.24 mmol)
were added to a schlenk tube followed by vacuum addition of nitrogen atmosphere. Liquid
components, aniline (22 pL, 0.24 mmol), DIPEA (42 pL, 0.24 mmol), ethyl acetate (1 mL)
were then added through a septum and the reaction was stirred at room temperature
overnight. The reaction was then washed with aqueous ammonium chloride to quench the
reaction and the aqueous phase was extracted with ethyl acetate (3x). The combined
organic layer was then dried and evaporated. Finally, the mixture was separated using silica
gel chromatography (6:1:1 hexane:ethyl acetate:DCM) to yield a solid product (46.6. mg,
71 % yield). 'THNMR (500 MHz, CDCl3) & 8.30 (s, 1H), 8.25 (s, 2H), 8.09 (s, 2H), 7.68 (d,
J=179Hz, 3H), 7.57 (d, J= 7.5 Hz, 2H), 7.47 — 7.35 (m, 6H), 7.35 - 7.29 (m, 7H), 7.28 —
7.22 (m, 7H), 7.19 (t, J=7.4 Hz, 2H), 7.12 — 7.08 (m, 1H). 3CNMR (126 MHz, Acetone)
0 165.62, 148.61 (d, 28.9 Hz), 142.70 (d, 6.0 Hz), 141.93, 140.29, 139.09, 138.64 (d, 12.9),
137.35,137.32, 136.51 (d, J=15.4 Hz), 135.16, 134.50 (d, J=20.0 Hz), 131.39 (d, 4.1 Hz),

131.08 (d, J=4.9 Hz), 129.99, 129.55, 129.49, 129.42 (d, J=4.5 Hz), 128.60, 127.24,
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126.71, 124.75, 121.15, 121.09, 121.00. 3'PNMR (202 MHz, Acetone) & -14.02. HRMS

(ESI): Found m/z 651.2190. Calcd. for C44H32N202P : (M-H) 651.2196

COOH HN. O

O g COOH PyBOP 2.4 eq.
+ NH, DIPEA 2469 HN
O DMF, rt, overnight O

PPh, 73% yield

Scheme 5.6  Synthesis of N3,N5-dibenzyl-2"-(diphenylphosphaneyl)-[1,1":4',1"-
terphenyl]-3,5-dicarboxamide (6)

Solid starting materials, phosphine (50 mg, 0.1 mmol), PyBOP (124.9 mg, 0.24 mmol)
were added to a schlenk tube followed by vacuum addition of nitrogen atmosphere. Liquid
components, amine (26 puL, 0.24 mmol), DIPEA (42 pL, 0.24 mmol), ethyl acetate (1 mL)
were then added through a septum and the reaction was stirred at room temperature
overnight. The reaction was then washed with aqueous ammonium chloride to quench the
reaction and the aqueous phase was extracted with ethyl acetate (3x). The combined
organic layer was then dried and evaporated. Finally, the mixture was separated using silica
gel chromatography (2:1 hexane:ethyl acetate) to yield a solid product (49.4 mg, 73 %
yield). 'THNMR (500 MHz, CDCl3) & 8.15 (d, J = 4.3 Hz, 2H), 7.48 (d, J = 6.8 Hz, 2H),
7.44 —7.37 (m, 2H), 7.36 — 7.18 (m, 24H), 7.13 — 7.06 (m, 1H), 6.87 — 6.77 (m, 2H), 4.60
(s, 4H). BCNMR (126 MHz, CDCl3) & 166.54, 147.44 (d, J=28.6 Hz), 141.83, 141.71 (d,

J=6.3 Hz), 138.13, 137.82, 137.43 (d, J=11.5 Hz), 135.80 (d, J=14.2 Hz), 135.13, 134.26,
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133.85 (d, J=19.7 Hz), 131.65, 130.37 (d, J=3.9 Hz), 130.08 (d, J=5.0 Hz), 128.82, 128.73,
128.70, 128.63, 128.54, 128.42 (d, J=6.8 Hz), 127.87, 127.60, 127.42, 126.33, 125.99,
123.94, 44.21, 29.25. HRMS (ESI): Found m/z 659.2504. Calcd. for C4sH36N202P: (M-

H) 679.2509

O

COOH HN. O

g COOH NH2 PyBOP 2.4 eq. ‘ °
+ ©/k DIPEA 2.4 eq. Hi

DMF, rt, overnight O
PPh; 58% yield PPh,

Scheme 5.7  Synthesis of 2"-(diphenylphosphaneyl)-N3,N5-bis(1-phenylethyl)-
[1,1:4',1"-terphenyl]-3,5-dicarboxamide (7)

Solid starting materials, phosphine (100 mg, 0.2 mmol), PyBOP (250 mg, 0.48 mmol) were
added to a schlenk tube followed by vacuum addition of nitrogen atmosphere. Liquid
components, amine (60 uL, 0.48 mmol), DIPEA (90 uL, 0.48 mmol), dimethyl formamide
(2 mL) were then added through a septum and the reaction was stirred at room temperature
overnight. The reaction was then diluted with DCM (15 mL) washed with water (4 x 15
mL). The organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography (2:1 hexane:ethyl acetate) to yield a solid product (82mg,
58 % yield). 'HNMR (500 MHz, CDCl3) 6 8.10 (s, 1H), 8.08 (s, 2H), 7.45 (d, J = 7.7 Hz,
2H), 7.41 (s, 1H), 7.35 (d, J= 7.3 Hz, 5H), 7.30 (t, /= 6.8 Hz, 10H), 7.26 — 7.19 (m, 9H),
7.10 — 7.06 (m, 1H), 6.72 (d, J = 7.6 Hz, 2H), 5.34 — 5.26 (m, 2H), 1.57 (d, J = 6.8 Hz,
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6H). BCNMR (126 MHz, CDCl3) § 165.77, 147.47 (d, J=28.7 Hz), 142.87, 141.84, 141.71
(d, J=6.2 Hz), 137.91, 137.45 (d, J=11.4 Hz), 135.75 (d, J=14.1 Hz), 135.32, 134.27, 133.86
(d, J=19.8 Hz), 130.37 (d, J=3.8 Hz), 130.07 (d, J=4.9 Hz), 128.82, 128.73, 128.55, 128.42
(d, J=6.8 Hz), 127.61, 127.49, 126.36, 126.31, 126.26, 123.92, 77.28, 77.03, 76.77, 49.57,
21.70 PNMR (202 MHz, CDCl3) & -13.57. HRMS (ESI): Found m/z 708.2900. Calcd.

for C4sH41N202P: (M) 708.2900

OE

N

—

COOH
‘ g COOH o PyBOP 2.4 eq.
DIPEA 2.4 eq.
+ H5N . HCI >
O 2 \)J\OEt EtOAc, rt, overnight
PPh, 57% yield

Scheme 5.8  Synthesis of diethyl 2,2'-((2"-(diphenylphosphaneyl)-[1,1":4',1"-terphenyl]-
3,5-dicarbonyl)bis(azanediyl))diacetate (8)

Solid starting materials, phosphine (200 mg, 0.4 mmol), PyBOP (500 mg, 0.96 mmol)
and glycine ester (134.4 mg, 0.96 mmol) were added to a schlenk tube followed by
vacuum addition of nitrogen atmosphere. Liquid components, DIPEA (180 pL, 0.96
mmol), DMF (4 mL) were then added through a septum and the reaction was stirred at
room temperature overnight. The reaction was then diluted with DCM (50 mL) washed
with water (6 x 50 mL). The organic layer was then dried and evaporated. Finally, the
mixture was separated using silica gel chromatography to yield a solid product (154.5

mg, 57 % yield).'"HNMR (500 MHz, CDCls) § 8.15 (s, 1H), 8.09 (d, J = 1.3 Hz, 2H),
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7.45—-17.39 (m, 3H), 7.37 — 7.32 (m, 2H), 7.32 — 7.27 (m, 6H), 7.25 — 7.20 (m, 6H), 7.09
(dd, J=7.3,3.7 Hz, 1H), 4.29 — 4.21 (m, 8H), 1.31 (t,J = 7.1 Hz, 6H). 3CNMR (126
MHz, CDCI3) 6 170.10, 166.98, 166.85, 147.56 (d, J=28.5 Hz), 141.60 (d, J=8.3 Hz),
140.26, 137.86, 137.69, 137.48 (d, J=11.5 Hz), 135.83 (d, J=14.1 Hz), 134.56, 134.44,
134.41, 134.24, 134.05, 133.87 (d, J=19.7 Hz), 133.38, 132.55, 132.02, 131.92, 131.69,
131.62, 130.42, 130.34 (d, J=3.7 Hz), 130.11 (d, J=5.0 Hz), 129.03, 128.83 (d, J=9.1 Hz),
128.54, 128.46, 128.41, 128.31, 127.55, 126.86, 126.77, 126.32, 125.95, 124.48, 124.14,
77.28,77.03,76.77, 61.62, 61.60, 61.55, 61.53, 41.97, 29.70, 14.17. 3'PNMR (202 MHz,
CDCl) 6 -13.69. HRMS (ESI): Found m/z 671.2306. Calcd. for C40H36N206P: (M-H)

671.2306

MeOOC\)\

COOH Hlil o

‘ COOH PyBOP 2.4 eq. O
O )Yi'\"e DIPEA 2.4 eq. O 0
+ 6] ) HN
O ¢ HCI DMF, rt, overnight

NH
PPh, 2 24% yield O oph COOMe
2

Scheme 5.9  Synthesis of dimethyl 2,2'-((2"-(diphenylphosphaneyl)-[1,1":4',1"-
terphenyl]-3,5-dicarbonyl)bis(azanediyl))bis(3-methylbutanoate) (9)

Solid starting materials, phosphine (58.3 mg, 0.12 mmol), PyBOP (143.5 mg, 0.29 mmol)
and valine ester (46.7 mg, 0.29 mmol) were added to a schlenk tube followed by vacuum
addition of nitrogen atmosphere. Liquid components, DIPEA (51.6 puL, 0.29 mmol), DMF

(1 mL) were then added through a septum and the reaction was stirred at room temperature
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overnight. The reaction was then diluted with DCM (15 mL) washed with water (6 x 15
mL). The organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography (2:1 hexane:ethyl acetate) to yield a solid product (21.1
mg, 24 % yield). 'THNMR (500 MHz, CDCl3) & 8.20 (s, 1H), 8.17 (s, 2H), 7.55 (d, J = 8.1
Hz, 2H), 7.43 (t, J=7.4 Hz, 1H), 7.39 — 7.36 (m, 1H), 7.36 — 7.28 (m, 9H), 7.28 — 7.22 (m,
6H), 7.10 (dd, J=17.5,3.7 Hz, 1H), 6.75 (d, J= 8.6 Hz, 2H), 4.82 (dd, J= 8.6, 5.1 Hz, 2H),
3.80 (s, 6H), 1.03 (dd,/=9.9, 6.9 Hz, 12H). BCNMR (126 MHz, CDCl3) § 172.38, 166.40,
147.45 (d, J=28.8 Hz), 142.19, 141.88 (d, J=6.1 Hz), 137.89, 137.42 (d, J=11.2), 135.90
(d, J=14.1 Hz), 135.16, 134.22, 133.93 (d, J=19.8 Hz), 130.45 (d, J=3.9 Hz), 130.09 (d,
J=4.9 Hz), 128.87, 128.81, 128.58, 128.44 (d, J=6.9 Hz), 127.63, 126.49, 124.21, 57.73,
52.35, 31.66, 19.07, 18.11. 3’PNMR (202 MHz, CDCl3) § -13.49. HRMS (ESI): Found

m/z727.2932. Calcd. for C44H44N206P : (M-H) 727.2932

COOMe
Lo
1.) 2 eq. dimer

RUC|2

O CHCI3, dark, rt, 30 min
(0] >
O 2.) LED 650 lumins, rt
HN CHClj, 3h
O \© 80% yield
PPh,

Scheme 5.10 Synthesis of aniline amide Ru complex (10)

Phosphine ligand (38.5 mg, 0.059 mmol), Ru starting material (75.5 mg, 0.12 mmol), and

CHCI3 (3 mL) were added to a small glass vial and stirred under dark conditions for 30
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min. Following this, components were separated by silica gel chromatography (1:1
CHCIs:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) for 3h. This mixture was then separated by
silica gel chromatography (1:1 CHCI3:EtOAc) to yield a yellow product (38.7 mg, 80 %
yield). 'THNMR (300 MHz, CDCl3) & 9.82 (s, 1H), 8.58 (s, 2H), 8.46 (s, 1H), 7.73 (d, J =
7.4 Hz, 5H), 7.66 — 7.45 (m, 8H), 7.45 — 7.28 (m, 10H), 7.17 — 7.06 (m, 2H), 6.45 (d, J =
5.7 Hz, 2H), 5.42 (d, J = 5.8 Hz, 2H). 3CNMR (126 MHz, CDCls) 8 165.56, 144.41,
144.02, 143.47 (d, 22.1 Hz), 138.36, 138.27, 136.67, 136.63, 135.63, 133.80 (d, J=9.9 Hz),
133.18, 131.67, 131.11 (d, J=2.8 Hz), 130.32 (d, J=6.5 Hz), 130.15, 129.65, 129.25,
128.99, 128.93, 128.31 (d, J=11.1 Hz), 127.54 (d, J=12.6 Hz), 127.34, 124.61, 120.84,
120.74, 109.75, 104.60 (d, 15.4 Hz), 96.94, 80.66, 29.73. 3'PNMR (202 MHz, CDCl3) §
53.91. HRMS (ESI): Found m/z 789.0996. Calcd. for Cs4H33CIN202PRu : (M-CI)

789.1006

: 1 /@COOMe
1.)2eq.

dimer
RuCl,

O CHCls, dark, rt, 30 min
0 >
O 2.) LED 650 lumins, rt
HN CHCls, 3h

O 33% yield
PPh,

Scheme 5.11 Synthesis of benzylamine Ru complex (11)
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Phosphine ligand (39 mg, 0.057 mmol), Ru starting material (73.8 mg, 0.11 mmol), and
CHCI3 (3 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (1:1
CHCIs:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) for 3h. This mixture was then separated by
silica gel chromatography (1:1:0.05 CHCl3:EtOAc:MeOH) to yield a yellow product (15.8
mg, 33 % yield). 'THNMR (500 MHz, CDCl3) 6 8.48 (d, J= 1.9 Hz, 2H), 8.32 (d, J= 1.7
Hz, 1H), 7.73 (dd, J = 7.5, 2.5 Hz, 1H), 7.66 — 7.62 (m, 1H), 7.62 — 7.58 (m, 2H), 7.52
(ddd,J=11.5,5.5, 3.6 Hz, 4H), 7.48 — 7.42 (m, 2H), 7.39 (dd, J=10.4, 7.8 Hz, 8H), 7.35
—7.28 (m, 6H), 7.28 — 7.22 (m, 2H), 6.41 (d, J = 5.8 Hz, 2H), 5.43 (d, J = 5.7 Hz, 2H),
4.62 (s, 4H). BCNMR (126 MHz, CDCl3) 6 167.08, 144.49, 144.09, 143.59 (d, J=22.3 Hz),
138.27,135.93, 135.90, 135.51, 133.81 (d, J=9.9 Hz), 133.19, 131.67 (d, J=2.2 Hz), 131.10
(d,J=2.9 Hz), 130.30 (d, J=6.8 Hz), 130.05, 129.81, 129.41, 128.61, 128.31 (d, J=11.0 Hz),
127.83, 127.64, 127.54, 127.32, 126.95, 109.39 (d, J=3.4 Hz), 105.47 (d, J=15.1 Hz),
96.64, 81.00, 44.18, 44.05, 29.75. 3'PNMR (202 MHz, CDCl3) 8 53.76. HRMS (ESI):

Found m/z 817.1323. Calcd. for C46H37CIN202PRu : (M-Cl) 817.1319
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HN CHCIg, overnight
O H 60% yield
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Scheme 5.12 Synthesis of phenylethylamide Ru complex (12)

Phosphine ligand (50 mg, 0.070 mmol), Ru starting material (80.9 mg, 0.141 mmol), and
CHCI3 (5 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (1:1
CHCI3:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) overnight. This mixture was then
separated by silica gel chromatography (1:1 CHCI3:EtOAc) to yield a yellow product
(37.2 mg, 60 % yield). 'THNMR (500 MHz, CDCl3) & 8.64 (s,2H), 8.25 (s, 1H), 7.71
(1H), 7.69 — 7.51 (m, 8H), 7.51 — 7.35 (m, 10H), 7.35 — 7.18 (m, 9H), 7.05 (d, /= 7.5 Hz,
2H), 6.37 (d, J= 5.8 Hz, 1H), 6.29 (d, J= 5.9 Hz, 1H), 5.37 (dd, J = 8.2, 6.1 Hz, 2H),
5.32-5.21 (m, 2H), 1.58 (d, J = 6.9 Hz, 6H). *CNMR (126 MHz, CDCl3) & 165.34,
144.70, 144.31, 143.59 (d, J=22.1 Hz), 143.20, 135.87, 135.65, 133.90, 133.84 (dd,
J=9.8, 5.5 Hz), 133.78, 133.14, 131.51, 131.00 (d, J=2.8 Hz), 130.18, 130.08, 129.76,
129.68, 129.36, 128.79, 128.65, 128.43-127.97 (m), 127.56, 127.46, 127.26, 126.30,

126.14, 108.92 (d, J=3.1 Hz), 105.04 (d, J=14.1 Hz), 97.23, 96.53, 81.07 (d, J=14.0 Hz),
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49.85,22.22. 3'PNMR (202 MHz, CDCl3) 4 53.91. HRMS (ESI): Found m/z 845.1637.

Calcd. for CasH41CliN202PRu: (M-Cl) 845.1632

o)\ COOMe
1.)2eq.

RUC|2
CHCI3, dark, rt, 30 min

2.) LED 650 lumins, rt
CHCI3, overnight

;l\ 35% yield

PPh, 07~ “OEt

Scheme 5.13 Synthesis of glycine Ru complex (13)

Phosphine ligand (50 mg, 0.074 mmol), Ru starting material (95.7 mg, 0.15 mmol), and
CHCI3 (5 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (1:1
CHCI3:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) overnight. This mixture was then separated
by silica gel chromatography (1:1 CHCI3:EtOAc) to yield a yellow product (22 mg, 35 %
yield). 'THNMR (300 MHz, CDCl3) § 8.53 (s, 2H), 8.33 (s, 1H), 7.73 (d, J = 5.0 Hz, 1H),
7.69 — 7.48 (m, 9H), 7.48 — 7.31 (m, 6H), 6.46 (d, J = 5.2 Hz, 2H), 5.41 — 5.33 (m, 2H),
4.19 (m, 8H), 1.30 — 1.20 (m, 6H) '3*CNMR (126 MHz, CDCl3) 5 169.85, 169.83, 167.18,
167.12, 144.49, 144.09, 143.63 (d, J=22.0 Hz), 135.57, 135.23 (d, J=3.8 Hz), 133.81 (d,
J=9.8 Hz), 133.12, 131.61, 131.03 (d, J=2.9 Hz), 130.32, 130.22 (d, J=6.6 Hz), 129.86,

129.46, 128.27 (d, J=10.9 Hz), 127.66, 127.56, 127.16, 109.29 (d, J=3.0 Hz), 105.24 (d,
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J=15.1 Hz), 96.70 (d, J=2.6 Hz), 81.00, 61.42, 42.09, 41.98, 14.18. 3'PNMR (202 MHz,
CDCI3) 6 54.08. HRMS (ESI): Found m/z 809.1116. Caled. for C40H37CliN20s¢PRu: (M-

CD 809.1116

COOMe
MeOOC /@ 2
H 1.) 2 eq. dimer

RuCl,
CHCls, dark, rt, 30 min

O 2.) LED 650 lumins, rt
O CHCl,, overnight
: OVe
HN\H\ 59% yield
O COOMe
PPh,

Scheme 5.14 Synthesis of Valine Ru Complex (14)

Phosphine ligand (10 mg, 0.014 mmol), Ru starting material (10 mg, 0.014 mmol), and
CHCI3 (1 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (2:1
CHCIs:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) overnight. This mixture was then separated
by silica gel chromatography (1:1 CHCI3:EtOAc) to yield a yellow product (7.4 mg, 59 %
yield). '"HNMR (500 MHz, CDCl3) & 8.55 (s, 2H), 8.32 (s, 1H), 7.84 (d, J = 8.4 Hz, 1H),
7.73 (d,J=7.7 Hz, 1H), 7.64 (t,J=7.0 Hz, 1H), 7.61 — 7.48 (m, 6H), 7.48 — 7.43 (m, 2H),
7.43 —7.36 (m, 3H), 6.47 — 6.41 (m, 2H), 5.40 (d, J = 5.8 Hz, 1H), 4.70 — 4.63 (m, 2H),
3.77 (s, 6H), 1.04 (td, J= 6.9, 1.5 Hz, 12H). *CNMR (126 MHz, CDCl3) § 172.32, 167.16,
144.59, 143.43, 135.59, 133.88, 133.82 (dd, J=9.6, 5.7 Hz), 133.81, 133.76, 133.22,

131.58, 131.02 (d, J=4.6 Hz), 130.29, 128.31, 128.26 (dd, 11.2, 2.7 Hz), 128.22, 128.20,
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127.49, 127.39, 126.84, 97.61, 96.75, 80.39, 58.66, 58.56, 52.19, 31.04, 19.20, 18.45.

SIPNMR (202 MHz, CDCls) & 53.33. HRMS (ESI): Found m/z 865.1744. Calcd. for

C44H45CIN206PRu : (M-CI) 865.1742

5.3 Synthesis of meta-substituted complexes

COsMe K,C03 3 eq.
I Pd(OAc)2 2 mol%
. DPPF 2.4 mol%
“B ,Me
Dioxane/H,C 2:1
r 100°C, 3h
B4% yield

CO;Me

OzMe

Scheme 5.15 Synthesis of dimethyl 3'-bromo-[1,1'-biphenyl]-3,5-dicarboxylate (15)

Solid starting materials, diester (1.0 g, 3.16 mmol), 1,3-bromoiodobenzene (600 uL, 4.74

mmol), palladium acetate (14.2 mg, 0.06 mmol), DPPF (42.1 mg, 0.076 mmol), potassium

carbonate (1.34 g, 9.48 mmol were added to a schlenk tube followed by vacuum addition

of nitrogen atmosphere. Liquid components, dioxane (5 mL), H2O (2.5 mL) were then

added through a septum and the reaction was stirred at 100°C for 3h. Dioxane was next

evaporated out of the mixture and then the reaction was washed with water. The resulting

aqueous phase was extracted with ethyl acetate (3x). The combined organic phases were

then dried and evaporated and then separated using silica gel chromatography (hexane:

ethyl acetate: DCM 8:1:1) to yield a white solid product (941.6 mg, 85 % yield). '"HNMR

(300 MHz, CDCl3) 5 8.68 (t, J = 1.5 Hz, 1H), 8.42 (d, J = 1.5 Hz, 2H), 7.80 (t, J = 1.7 Hz,

1H), 7.62 — 7.52 (m, 2H), 7.36 (t, J = 7.9 Hz, 1H), 3.99 (s, 6H). *CNMR (126 MHz,
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CDCl) 6 166.04, 141.12, 140.45, 132.23,131.36, 131.22, 130.55, 130.24, 129.89, 125.84,

123.17, 52.54. HRMS (ESI): Found m/z 349.0070. Calcd. for CisH14BrOs: (M+H)

349.0070
CO:Me
COMe PA(OAC); 2 mol%
DPPF 2 mol%
) BPng KOAC 3 eq. : 0.Me
aMe THF
100°C, ovemight ot

r 05% vield l l

Scheme 5.16 Synthesis of dimethyl 3'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-
[1,1'-biphenyl]-3,5-dicarboxylate (16)

Solid starting materials, diester (1. 2 g, 3.44 mmol), B2Pin2 (917 mg, 3.61 mmol),
palladium acetate (15.5 mg, 0.066 mmol), DPPF (45.8 mg, 0.080 mmol), potassium
carbonate (1.012 g, 9.96 mmol) were added to a schlenk tube followed by vacuum addition
of nitrogen atmosphere. Liquid components, THF (8 mL) were then added through a
septum and the reaction was stirred at 100°C overnight. The inorganic media was next
filtered out of the mixture by using a silica pad (ethyl acetate). The resultant solution was
then evaporated and separated using silica gel chromatography (hexane: ethyl acetate 5:1)
to yield a solid product (1.299 g, 95 % yield). '"HNMR (500 MHz, CDCIs) & 8.65 (s, 1H),
8.48 (s, 2H), 8.08 (s, 1H), 7.85 (d, J = 7.3 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.49 (t, J =
7.5 Hz, 1H), 3.98 (s, 6H), 1.38 (s, 12H). BCNMR (126 MHz, CDCl3) § 166.30, 142.02,
138.44, 134.64, 133.42, 132.45, 131.08, 130.06, 129.28, 128.42, 84.04, 52.44, 24.90.

HRMS (ESI): Found m/z 397.1817. Calcd. for C22H26BOs: (M+H) 397.1817
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CO:Me
CO:Me

K2CO3 3 eq.
Br Pd(OAc)z 2 mol% Me

@: + Me _ DPPF2.4mors
PPhy

THF/HZO 4:1 PPh;
(OH)2 100°C, 2.5h
32% yleld

Scheme 5.17 Synthesis of dimethyl 2"-(diphenylphosphaneyl)-[1,1":3",1"-terphenyl]-3,5-
dicarboxylate (17)

Solid starting materials, phosphine (376 mg, 110 mmol), boronic acid (314 mg, 1.0 mmol),
potassium carbonate (420 mg, 3 mmol), palladium acetate (4.5 mg, 0.02 mmol), DPPF (13
mg, 0.024 mmol) were added to a schlenk tube followed by vacuum addition of nitrogen
atmosphere. Liquid components, THF (4 mL), H2O (1 mL) were then added through a
septum and the reaction was stirred at 100°C for 2.5h. The reaction was then washed with
water. The resulting aqueous phase was then extracted three times with ethyl acetate. The
combined organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography (10:1 hexane: ethyl acetate) to yield a solid product (170.8
mg, 32 % yield). "H NMR (500 MHz, CDCls) 6 8.63 (d, /= 1.6 Hz, 1H), 8.30 (d, /= 1.6
Hz, 2H), 7.56 (d, /= 7.8 Hz, 1H), 7.46 — 7.33 (m, 5H), 7.34 - 7.19 (m, 11H), 7.07 (dd, J =
7.9, 3.8 Hz, 1H), 3.98 (d, J = 1.3 Hz, 6H). BCNMR (126 MHz, CDCl3) § 166.24, 147.35
(d, J=27.1 Hz), 142.37 (d, J=5.7 Hz), 141.72, 138.24, 137.17 (d, J= 12.6 Hz), 134.05 (d,
J=20.2 Hz), 133.80, 132.27, 131.01, 130.03 (d, J=4.1 Hz), 129.51 (d, J=4.0 Hz), 129.27,
129.03, 128.80 (d, J=3.4 Hz), 128.71, 128.58, 128.41, 128.35, 128.27, 127.61, 125.84,
52.41,29.71. 3P NMR (121 MHz, CDCl3) § -12.57. HRMS (ESI): Found m/z 529.1563.

Calcd. for C34H2604P: (M-H) 529.1563
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CO,H

H
O CO.H PYBOP 1.2 eq. (2.4 mol eq.) O N
‘ 2 DIPEA 1.2 eq. (2.4 mol eq.) )

NH
PPh, + 2 EtOAc PPh,
‘ rt, overnight

67% vyield

Scheme 5.18 Synthesis of 2"-(diphenylphosphaneyl)-N3,N5-diphenyl-[1,1":3",1"-
terphenyl]-3,5-dicarboxamide (18)

Solid starting materials, phosphine (50 mg, 0.10 mmol), PyBOP (124.9 mg, 0.24 mmol)
were added to a schlenk tube followed by vacuum addition of nitrogen atmosphere. Liquid
components, amine (22 pL, 0.24 mmol), DIPEA (42 pL, 0.24 mmol), EtOAc (1 mL) were
then added through a septum and the reaction was stirred at room temperature overnight.
The reaction was then washed with water and extracted with ethyl acetate (3x). The
combined organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography (6:1:1 hexane: ethyl acetate:DCM) to yield a solid white
product (43.9 mg, 67 % yield). '"HNMR (500 MHz, CDCIl3) 8 8.19 (s, 2H), 8.16 (s, 1H),
7.95 (s, 2H), 7.65 (d, J = 8.0 Hz, 4H), 7.50 (d, /= 7.6 Hz, 1H), 7.43 — 7.32 (m, 8H), 7.32
—7.13 (m, 14H), 7.06 (dd, J = 7.6, 3.8 Hz, 1H). BCNMR (126 MHz, Acetone) & 165.08,
147.28 (d, J=27.9 Hz), 142.47 (d, J=5.9 Hz), 142.24, 137.92, 137.67, 137.24 (d, J=10.9
Hz), 136.01, 135.89 (d, J=14.2 Hz), 133.89 (d, J=20.0 Hz), 130.07 (d, J=4.8 Hz), 129.65
(d, J=3.3 Hz), 129.13, 128.86, 128.71, 128.68, 128.64, 128.61, 128.56, 128.42 (d, J=6.9
Hz), 127.68, 125.86, 124.88, 123.99, 120.39. 3'PNMR (202 MHz, Acetone) & -13.34.

HRMS (ESI): Found m/z 651.2196. Calcd. for C44H32N202P: (M-H) 651.2196.
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Scheme 5.19 Synthesis of N3,N5-dibenzyl-2"-(diphenylphosphaneyl)-[1,1":3',1"-
terphenyl]-3,5-dicarboxamide (19)

Solid starting materials, phosphine (50 mg, 0.10 mmol), PyBOP (124.9 mg, 0.24 mmol)
were added to a schlenk tube followed by vacuum addition of nitrogen atmosphere. Liquid
components, amine (26 puL, 0.24 mmol), DIPEA (42 pL, 0.24 mmol), EtOAc (1 mL) were
then added through a septum and the reaction was stirred at room temperature overnight.
The reaction was then washed with water and extracted with ethyl acetate (3x). The
combined organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography (2:1 hexane: ethyl acetate) to yield a solid white product
(43.1 mg, 59 % yield). 'THNMR (500 MHz, CDCI3) 6 8.07 (s, 1H), 7.87 (s, 2H), 7.43 (d, J
=7.6 Hz, 1H), 7.32 (d, J = 7.5 Hz, 2H), 7.27 (d, J = 5.6 Hz, 12H), 7.23 — 7.17 (m, 6H),
7.17—-17.07 (m, 11 H), 6.98 (dd, J= 7.3, 3.4 Hz, 1H), 6.52 (t, J= 5.0 Hz, 2H), 4.56 (d, J =
5.5 Hz, 4H). BCNMR (126 MHz, CDCl3) § 166.37, 147.30 (d, J=27.6 Hz), 142.33 (d,
J=5.9 Hz), 142.13, 138.36, 137.80, 137.24 (d, J=11.4 Hz), 136.15, 136.03, 135.17, 134.71,
133.99 (d, J=20.0 Hz), 133.86, 131.05, 130.02 (d, J=4.5 Hz), 129.51 (d, J=3.7 Hz), 128.83,

128.76, 128.72, 128.63, 128.54, 128.39, 128.36 (d, J=7.0 Hz), 128.16, 128.00, 127.94,
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127.75, 127.64, 127.40, 125.97, 124.12, 44.32. 3'PNMR (202 MHz, CDCIs) & -12.73.

HRMS (ESI): Found m/z679.2499. Calcd. for C46H36N202P : (M-H) 679.2509.

COzH
H PyBOP 1.2 eq. (2.4 mol eq.)
NH, DIPEA 1.2 eq. (2.4 mol eq.)
PPh, * " myﬂ
59% yleld

Scheme 5.20 Synthesis of 2"-(diphenylphosphaneyl)-N3,N5-bis(1-phenylethyl)-
[1,1":3",1"-terphenyl]-3,5-dicarboxamide (20)

Solid starting materials, phosphine (50 mg, 0.10 mmol), PyBOP (124.9 mg, 0.24 mmol)
were added to a schlenk tube followed by vacuum addition of nitrogen atmosphere. Liquid
components, amine (30 pL, 0.24 mmol), DIPEA (42 uL, 0.24 mmol), EtOAc (1 mL) were
then added through a septum and the reaction was stirred at room temperature overnight.
The reaction was then washed with water and extracted with ethyl acetate (3x). The
combined organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography (2:1 hexane: ethyl acetate) to yield a solid product (42.1
mg, 59 % yield) 'THNMR (300 MHz, CDCls) 8 8.12 (s, 1H), 7.94 (s, 2H), 7.46 (d, J = 7.4
Hz, 2H), 7.42 — 7.12 (m, 25H), 7.06 (dd, J = 7.2, 3.6 Hz, 1H), 6.60 (d, J = 7.6 Hz, 2H),
5.41 — 5.24 (quint, 2.11), 1.58 (d, J = 6.8 Hz, 6H). 3CNMR (126 MHz, CDCl3) § 165.67,

147.23 (d, J=27.3 Hz), 142.84, 142.29 (d, J=5.9 Hz), 142.09, 138.49, 137.20, 137.13 (dd,
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J=11.3 Hz), 137.06, 136.16 (d, J=14.7 Hz), 135.27, 134.05, 133.90, 133.86, 130.04 (d,
J=4.6 Hz), 129.50 (d, J=3.8 Hz), 128.75, 128.57 (d, J=2.8 Hz), 128.39, 128.34, 128.30,
127.61, 127.52, 126.27, 125.95, 124.01, 49.54, 21.69. ¥PNMR (121 MHz, CDCL3) & -

12.48. HRMS (ESI): Found m/z 707.2820. Calcd. for C4sH40N202P : (M-H) 707.2822

PyBOP 2.4 eq.
DIPEA 2.4 &q.
eq -

EtOAc, i, overnight
59% vield

Scheme 5.21 Synthesis of diethyl 2,2'-((2"-(diphenylphosphaneyl)-[1,1":3',1"-terphenyl]-
3,5-dicarbonyl)bis(azanediyl))diacetate (21)

Solid starting materials, phosphine (296.3 mg, 0.6 mmol), PyBOP (740.8 mg, 1.44 mmol)
and glycine ester (200 mg, 1.44 mmol) were added to a schlenk tube followed by vacuum
addition of nitrogen atmosphere. Liquid components, DIPEA (270uL, 1.44 mmol), DMF
(6 mL) were then added through a septum and the reaction was stirred at room temperature
overnight. The reaction was then diluted with DCM (50 mL) washed with water (6 x 50
mL). The organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography to yield a solid product (239.4 mg, 59 % yield). 'HNMR
(500 MHz, CDCls) 6 8.16 (s, 1H), 7.98 (s, 2H), 7.59 — 7.53 (m, 1H), 7.48 (d, J = 5.1 Hz,
1H), 7.46 — 7.38 (m, 2H), 7.38 — 7.31 (m, 3H), 7.31 — 7.24 (m, 8H), 7.23 — 7.19 (m, 3H),

7.06 (dd, J = 7.4, 3.6 Hz, 1H), 7.03 — 6.97 (m, 1H), 4.29 — 4.22 (m, 8H), 1.31 (t, J= 7.1
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Hz, 6H). BCNMR (126 MHz, CDCl3) § 170.14, 170.03, 170.00, 166.67, 147.33 (d, J=27.6
Hz), 142.34 (d, J=6.2 Hz), 142.03, 138.27, 137.24 (d, J=11.2 Hz), 136.15 (d, J=14.3 Hz),
134.58, 134.56, 134.04 (d, J=20.0 Hz), 133.81, 130.09 (d, J=4.5 Hz), 129.55 (d, J=4.0 Hz),
129.09, 128.97, 128.93, 128.74, 128.69, 128.56, 128.38 (d, J=6.9 Hz), 128.27, 128.21,
127.59, 127.19, 125.91, 124.17, 124.01, 61.72, 41.99, 14.18. ’PNMR (202 MHz, CDCl)

0 -12.65. HRMS (ESI): Found m/z 673.2462. Calcd. for C40H3sN206P : (M+H) 673.2462

1.)PyBOP 2.4 eq. DIPEA 2.4 eq.
EtCAe, rt, wanﬂgl;_

* €1 2)HsiCl; 32 eq., toluene, 6h
29% yleld

Scheme 5.22 Synthesis of dimethyl 2,2'-((2"-(diphenylphosphaneyl)-[1,1":3',1"-
terphenyl]-3,5-dicarbonyl)bis(azanediyl))bis(3-methylbutanoate) (22)

Solid starting materials, phosphine (385 mg, 0.82 mmol), PyBOP (1.02 g, 1.94 mmol) and
valine ester (331.9 mg, 1.94 mmol) were added to a schlenk tube followed by vacuum
addition of nitrogen atmosphere. Liquid components, DIPEA (270 uL, 1.44 mmol), DMF
(6 mL) were then added through a septum and the reaction was stirred at room temperature
overnight. The reaction was then diluted with DCM (50 mL) washed with water (6 x 50
mL). The organic layer was then dried and evaporated. Finally, the mixture was separated
using silica gel chromatography to yield a solid oxide intermediate (348.6 mg, 57 % yield)

for the first step. Next the 100 mg of the intermediate was added into a Schlenk tube
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followed by vacuum addition of nitrogen atmosphere. Liquid components, trichlorosilane
(440 pL, 4.3 mmol), toluene (6 mL) were then added to through a septum and the reaction
was stirred at reflux for 6h. The resulting mixture was then allowed to cool to room
temperature. Next the mixture was neutralized by sodium bicarbonate (1 mL saturated
aqueous solution) and stirred for Smin at room temperature before washing the mixture
with water (15 mL) and extracting with ethyl acetate (3x15 mL). The combined organic
phases were then dried and evaporated to yield a white solid (50.7 mg, 30% yield). 'HNMR
(500 MHz, CDCI3) & 8.20 (s, 1H), 8.03 (s, 2H), 7.52 (d, J = 7.7 Hz, 1H), 7.44 — 7.40 (m,
2H), 7.39 — 7.33 (m, 2H), 7.31 — 7.19 (m, 14H), 7.06 (dd, J= 7.5, 3.8 Hz, 1H), 6.83 (d, J
=7.1 Hz, 2H), 4.81 (dd, J = 8.5, 5.2 Hz, 2H), 3.78 (s, 6H), 2.35 — 2.25 (m, 2H), 1.03 (dd,
J=10.7, 6.9 Hz, 12H). BCNMR (126 MHz, CDCl3) 8 172.42, 166.51, 147.18 (d, J=26.9
Hz), 142.39 (d, J=5.9 Hz), 138.49, 137.15, 137.09 (dd, J=11.3, 3.5 Hz), 137.03, 136.27 (d,
J=14.6 Hz), 135.05, 134.05 (d, J=20.1 Hz), 133.97, 133.74, 130.08 (d, J=4.5 Hz), 129.62
(d, J=4.1 Hz), 128.96, 128.84 (d, J=3.6 Hz), 128.75, 128.59, 128.40, 128.35, 128.29,
127.60, 125.99, 124.23, 57.79, 52.32, 31.61, 19.07, 18.17. 3'PNMR (202 MHz, CDCl3) §

-12.23. HRMS (ESI): Found m/z 727.2930. Calcd. for C44H44N206P : (M-H) 727.2932
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HN.__O COOMe >/:
dimer
O RUCl,
O © CHCls, dark, rt, 30 min

HN\© 2.) LED 650 lumins, rt o)
CHCI5, overnight /7 \ H—N
PPh, 44% yield P

N cl
C D
Ph

Scheme 5.23 Synthesis of meta-substituted aniline Ru complex (23)

Phosphine ligand (12.7 mg, 0.020 mmol), Ru starting material (15.0 mg, 0.020 mmol), and
CHCI3 (3 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (3:1
CHCI3:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) for 4h. This mixture was then separated by
silica gel chromatography (1:1 CHCI3:EtOAc) to yield a yellow product (7.2 mg, 44 %
yield). '"HNMR (500 MHz, CDCl3) § 8.61 (s, 1H), 8.51 (d, J = 1.4 Hz, 2H), 7.76 (dd, J =
7.6, 1.8 Hz, 1H), 7.72 (d, J = 7.8 Hz, 4H), 7.69 — 7.63 (m, 3H), 7.63 — 7.56 (m, 2H), 7.51
—7.45 (m, 1H), 7.45 — 7.40 (m, 2H), 7.37 — 7.30 (m, 7H), 7.28 — 7.22 (m, 2H), 7.15 (t,J =
7.4 Hz, 2H), 6.80 (d, J= 6.2 Hz, 1H), 6.27 (t,J= 5.8 Hz, 1H), 5.56 (s, 1H), 5.50 (d, J=5.6
Hz, 1H). 3CNMR (126 MHz, CDCl3) & 164.89, 144.61, 144.21, 143.86, 143.68, 138.16,
138.07, 135.93, 134.30, 134.28, 134.03, 133.95, 133.64, 133.56, 133.05, 131.66, 131.40,
131.19, 131.17, 130.93, 130.91, 130.41, 130.36, 130.30, 130.01, 129.30, 128.91, 128.47,

128.38, 128.32, 128.17, 128.08, 127.77, 127.67, 124.76, 121.10, 121.00, 120.98, 112.31,
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110.40, 110.38, 95.40, 90.75, 90.63, 80.75, 78.98. 'PNMR (202 MHz, CDCl3) 8 53.19.

HRMS (ESI): Found m/z 789.1014. Calcd. for C44H33CIN202PRu: (M-Cl) 789.1006

HN.__O ; .COOMe
1.) 2 eq. dimer

RUC|2

O i@ CHCls, dark, rt, 30 min
>
HN 2.) LED 650 lumins, rt
CHCI;, overnight

i Nl
O PPh; 60% yield Ph‘\\\,P Cl \_©

Scheme 5.24 Synthesis of meta-substituted benzylamine Ru complex (24)

Phosphine ligand (16.7 mg, 0.024 mmol), Ru starting material (15.8 mg, 0.024 mmol), and
CHCI3 (3 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (1:1
CHCIs:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) for 4h. This mixture was then separated by
silica gel chromatography (1:1:0.05 CHCl3:EtOAc:MeOH) to yield a yellow product (12.8
mg, 60 % yield). 'THNMR (500 MHz, CDCl3) § 8.44 (s, 1H), 8.41 (s, 2H), 7.76 (d, J = 7.3
Hz, 1H), 7.71 — 7.63 (m, 3H), 7.60 — 7.55 (m, 2H), 7.47 (d, J = 6.8 Hz, 1H), 7.45 — 7.40
(m, 2H), 7.37 — 7.28 (m, 12 H), 7.28 — 7.22 (m, 5H), 6.68 (d, /= 5.8 Hz, 1H), 6.19 — 6.14
(m, 1H), 5.54 — 5.48 (m, 2H), 4.68 — 4.61 (m, 2H), 4.59 (m, 2H). 3*CNMR (126 MHz,
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CDCl) & 166.35, 144.60, 144.20, 143.76 (d, J=22.2Hz), 138.26, 135.19, 134.17, 134.01
(d, J=9.9 Hz), 133.58 (d, J=9.8 Hz), 133.03, 131.63, 131.19, 130.83, 130.35, 130.30,
128.99, 128.62, 128.45 (d, J=10.9 Hz), 128.10, 128.01, 127.81, 127.74, 127.63, 127.35,
113.69, 110.52 (d, J=2.8 Hz), 94.58, 90.46, 90.35, 80.86, 78.57, 44.08. 3'PNMR (202
MHz, CDCI3) ¢ 53.32. HRMS (ESI): Found m/z 817.1320. Calcd. for C46H37CIN202PRu

. (M-CI) 817.1319

HN_ _O COOMe >—©
07
1.)2eq. dimer

RUC|2

O g © CHCls, dark, rt, 30 min
>
HN 2.) LED 650 lumins, rt

CHCI;, overnight

7 N1 H-N
o e Ry

Scheme 5.25 Synthesis of meta-substituted phenylethylamine Ru complex (25)

Phosphine ligand (24 mg, 0.034 mmol), Ru starting material (21.9 mg, 0.034 mmol), and
CHCIs (2 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (1:1
CHCI3:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) for 4h. This mixture was then separated by
silica gel chromatography (1:1 CHCI3:EtOAc) to yield a yellow mixture of diastereomers

(10.6 mg and 11.8 mg, total=22.4 mg, 74 % yield). Diastereomer 1 (lower spot on TLC)
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THNMR (500 MHz, CDCl;3) 6 8.45 (s, 2H), 8.28 (s, 1H), 7.73 — 7.68 (m, 1H), 7.68 — 7.60
(m, 3H), 7.60 — 7.55 (m, 2H), 7.49 — 7.43 (m, 1H), 7.43 — 7.38 (m, 2H), 7.34 (d, J="7.5
Hz, 4H), 7.32 —7.25 (m, 9H), 7.24 - 7.15 (m, 6H), 6.66 (d, /= 6.1 Hz, 1H), 6.20 (t,J= 5.8
Hz, 1H), 5.47 (d, J= 5.6 Hz, 1H), 5.44 (s, 1H), 5.31 — 5.23 (m, 2H), 1.57 (d, /= 7.0 Hz,
6H). 3CNMR (126 MHz, CDCl3) § 165.09, 145.06, 144.65, 143.79 (d, J=21.6 Hz), 143.12,
135.30, 134.58, 134.57, 134.01, 133.93, 133.72 (d, J=10.2 Hz), 132.97, 131.48, 131.14,
131.03, 130.76 (d, J=2.9 Hz), 130.15 (d, J=6.8 Hz), 128.65, 128.29 (d, J=10.9 Hz), 128.04,
127.96, 127.65, 127.56, 127.28, 126.94, 126.25, 109.62, 91.28, 81.26, 49.87, 22.12.
SPNMR (202 MHz, CDCls) 8 52.72. HRMS (ESI): Found m/z 845.1622. Calcd. for
C48Ha1CIN202PRu: (M-C1) 845.1632. Diastereomer 2 (higher spot on TLC) 'THNMR (500
MHz, CDCls) 6 8.33 (s, 3H), 7.69 (d, /= 6.2 Hz, 1H), 7.60 (dd, /= 11.8, 7.2 Hz, 4H), 7.57
—7.52 (m, 2H), 7.49 — 7.38 (m, 6H), 7.35 (d, /= 7.5 Hz, 5H), 7.34 — 7.28 (m, 7H), 7.22 (t,
J=17.3 Hz, 2H), 6.99 (d, J = 4.8 Hz, 1H), 6.69 (s, 1H), 5.52 (s, 1H), 5.36 (d, J = 5.6 Hz,
1H), 5.26 (p, J = 6.9 Hz, 2H), 1.54 (d, J = 7.0 Hz, 6H). 3CNMR (126 MHz, CDCl3) &
164.96, 144.63, 144.24, 143.81 (d, J=22.0 Hz), 143.42, 134.97, 134.24, 133.87 (d, J=,9.6
Hz) 133.71, 133.63, 133.02, 131.44, 131.12, 130.92-130.87 (m), 130.74 (d, J=2.9 Hz),
130.18, 130.13, 129.95, 129.64, 129.54, 129.25, 128.62, 128.28, 128.22 (dd, J=10.9, 5.4
Hz), 128.15, 127.66, 127.53, 127.43, 127.21, 126.26, 111.83, 111.82, 110.61, 97.74, 89.87,
79.07, 50.02, 22.05. 3'PNMR (202 MHz, CDCl3) § 53.47. HRMS (ESI): Found m/z

845.1636. Calcd. for CasHa1CIN202PRu: (M-Cl) 845.1632.
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OEt (0]
o)\ COOMe
"N O /@ di
imer

1.)2eq. RuCl,

CHCI3, dark, rt, 30 min
0

2.) LED 650 lumins, rt
HN CHCI3, overnight

55% yield
PPh, o

Scheme 5.26 Synthesis of glycine Ru complex (26)

Phosphine ligand (50 mg, 0.074 mmol), Ru starting material (95.7 mg, 0.148 mmol), and
CHCI3 (5 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (1:1
CHCI3:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) overnight. This mixture was then separated
by silica gel chromatography (1:1 CHCI3:EtOAc) to yield a yellow product (34.3 mg, 55
% yield). '"HNMR (500 MHz, CDCI3) & 8.44 (s, 1H), 8.41 (s, 2H), 7.74 (s, 1H), 7.69 (dd,
J=11.0,7.7 Hz, 2H), 7.66 — 7.62 (m, 1H), 7.62 — 7.55 (m, 2H), 7.46 (d, J= 6.2 Hz, 1H),
7.43 (d, J= 6.2 Hz, 2H), 7.35 (s, 1H), 7.32 — 7.23 (m, 6H), 6.69 (d, /= 5.1 Hz, 1H), 6.17
(t,J=5.3 Hz, 1H), 5.52 (d, J=5.3 Hz, 1H), 5.47 (s, 1H), 4.26 — 4.06 (m, 8H), 1.29 (t, J =
7.1 Hz, 6H). 3CNMR (126 MHz, CDCl3) 4 169.78, 166.49, 144.66, 143.78 (d, J=21.8 Hz),
134.63, 134.24, 134.07, 133.99, 133.57 (d, J=9.6 Hz), 132.98, 131.54, 131.15, 130.88,
130.79, 130.48, 130.24 (d, J=6.8 Hz), 128.43 (d, J=10.8 Hz), 128.07, 127.98, 127.73,

127.64, 113.41, 110.26, 94.58, 90.60 (d, J=14.5 Hz), 80.97, 78.82, 61.46, 41.96, 14.18.
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SIPNMR (202 MHz, CDCls) & 53.35. HRMS (ESI): Found m/z 809.1116. Calcd. for

C40H37N2CLiO6PRu :(M-CI) 809.1116

OEt e}
O//‘\H\ /@COOMe
1.) 2 eq.

HN (@)
dimer
RuCl,
CHClj, dark, rt, 30 min
o} >
2.) LED 650 lumins, rt
HN CHClIj3, overnight
74% vyield

PPh,
O 0% OEt

Scheme 5.27 Synthesis of meta-substituted valine Ru complex (27)

Phosphine ligand (50 mg, 0.069 mmol), Ru starting material (44 mg, 0.069 mmol), and
CHCI3 (5 mL) were added to a small glass vial and stirred under dark conditions for 30
min. Following this, components were separated by silica gel chromatography (1:1
CHCIs:EtOAc). The resulting red intermediate complex was then added to a small glass
vial and stirred under a desk lamp (650 lumin) overnight. This mixture was then separated
by silica gel chromatography (1:1 CHCl3:EtOAc) to yield a yellow product (48.1 mg, 74
% yield). 'THNMR (500 MHz, CDCl3) 6 8.49 (s, 2H), 8.35 (d, /= 19.9 Hz, 1H), 7.71 (d, J
=6.9 Hz, 1H), 7.67 — 7.55 (m, 4H), 7.46 — 7.28 (m, 5H), 7.25 - 7.16 (m, 2H), 7.09 (d, J =
8.2 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 6.68 (dd, J = 15.5, 5.6 Hz, 1H), 6.23 (dt, J=19.3,
5.6 Hz, 1H), 5.50 — 5.45 (m, 2H), 4.70 — 4.65 (m, 2H), 3.75 (d, /= 7.7 Hz, 6H), 2.30 — 2.21

(m, 2H), 1.01 — 0.96 (m, 12H). *CNMR (126 MHz, CDCl3) § 172.00, 166.14, 165.95,
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145.19, 144.79, 143.89 (d, J=21.6 Hz), 134.94, 134.82, 134.80, 134.04, 133.99 (dd, J=9.9,
2.4 Hz), 133.95, 133.88, 133.80, 132.99, 132.94, 131.54, 131.45 (d, J=4.8 Hz), 130.99,
130.96, 130.94, 130.70, 130.46, 130.16, 130.12, 130.07, 129.76, 129.67, 129.36, 128.30,
128.24 (dd, J=10.9, 4.5 Hz), 128.18, 128.04, 127.99 (dd, J=11.0, 2.4 Hz), 127.94, 127.71,
127.64 (dd, J=12.6, 4.6 Hz), 127.07, 126.94, 111.08 (d, J=4.4 Hz), 110.19, 109.39 (t, J=2.7
Hz), 96.05, 95.39,91.62, 91.54 (dd, J=14.3, 6.2 Hz), 81.57 (d, J=10.8 Hz), 79.96 (d, J=28.8
Hz), 58.33, 58.28, 52.29, 52.21, 31.16, 31.12, 19.15, 19.14, 18.33, 18.26. 3'PNMR (202
MHz, CDCI3) 6 52.63, 52.23. HRMS (ESI): Found m/z 865.1747. Calcd. for

C44H45CIN206PRu : (M-CI) 865.1742.
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APPENDIX A

SPECTRA FOR HOSOMI-SAKURA
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APPENDIX B

SPECTRA FOR RUTHENIUM COMPLEXES
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B.1 1HNMR spectra
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B.2 BCNMR spectra
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B.3  3PNMR spectra
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Figure B.61 Ruthenium complex 12
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Figure B.62 Ruthenium complex 11

166

www.manharaa.com




53.91

50 130

LA B S B S B S B | LI S B e S B AR A |

110 %0 70 50 30 10 -0 -30

T T T T T T

50 =70 90 -110 -130 -150 -170 -190 -210 -230 -2t
f1 (ppm)

Figure B.63 Ruthenium complex 10
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Figure B.64 Ruthenium complex 13
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Figure B.65 Ruthenium complex 14
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Figure B.72 Ruthenium complex 25/Diastereomer 1

171

www.manharaa.com




53.47

50 130 110 90 70 50 30 10 -0 -30 ; iSU ) -70 90 -110 -130 -150 -170 -190 -210 -230 -2t
1 (ppm

Figure B.73 Ruthenium complex 25/Diastereomer 2
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Figure B.74 Ruthenium complex 24
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Figure B.75 Ruthenium complex 23
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Figure B.76 Ruthenium complex 26
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